MapReduce工作原理图文详解

标签: mapreduce 工作 原理 | 发表时间:2012-04-04 18:31 | 作者:
出处:http://www.iteye.com

                                                                      MapReduce工作原理图文详解
前言:

前段时间我们云计算团队一起学习了hadoop相关的知识,大家都积极地做了、学了很多东西,收获颇丰。可是开学后,大家都忙各自的事情,云计算方面的动静都不太大。呵呵~不过最近在胡老大的号召下,我们云计算团队重振旗鼓了,希望大伙仍高举“云在手,跟我走”的口号战斗下去。这篇博文就算是我们团队“重启云计算”的见证吧,也希望有更多优秀的文章出炉。汤帅,亮仔,谢总•••搞起来啊!

呵呵,下面我们进入正题,这篇文章主要分析以下两点内容:
目录:
1.MapReduce作业运行流程
2.Map、Reduce任务中Shuffle和排序的过程

正文:

1.MapReduce作业运行流程


下面贴出我用viso2010画出的流程示意图:

 

 

 

流程分析:


1.在客户端启动一个作业。


2.向JobTracker请求一个Job ID。


3.将运行作业所需要的资源文件复制到HDFS上,包括MapReduce程序打包的JAR文件、配置文件和客户端计算所得的输入划分信息。这些文件都存放在JobTracker专门为该作业创建的文件夹中。文件夹名为该作业的Job ID。JAR文件默认会有10个副本(mapred.submit.replication属性控制);输入划分信息告诉了JobTracker应该为这个作业启动多少个map任务等信息。


4.JobTracker接收到作业后,将其放在一个作业队列里,等待作业调度器对其进行调度(这里是不是很像微机中的进程调度呢,呵呵),当作业调度器根据自己的调度算法调度到该作业时,会根据输入划分信息为每个划分创建一个map任务,并将map任务分配给TaskTracker执行。对于map和reduce任务,TaskTracker根据主机核的数量和内存的大小有固定数量的map槽和reduce槽。这里需要强调的是:map任务不是随随便便地分配给某个TaskTracker的,这里有个概念叫:数据本地化(Data-Local)。意思是:将map任务分配给含有该map处理的数据块的TaskTracker上,同时将程序JAR包复制到该TaskTracker上来运行,这叫“运算移动,数据不移动”。而分配reduce任务时并不考虑数据本地化。


5.TaskTracker每隔一段时间会给JobTracker发送一个心跳,告诉JobTracker它依然在运行,同时心跳中还携带着很多的信息,比如当前map任务完成的进度等信息。当JobTracker收到作业的最后一个任务完成信息时,便把该作业设置成“成功”。当JobClient查询状态时,它将得知任务已完成,便显示一条消息给用户。

以上是在客户端、JobTracker、TaskTracker的层次来分析MapReduce的工作原理的,下面我们再细致一点,从map任务和reduce任务的层次来分析分析吧。

2.Map、Reduce任务中Shuffle和排序的过程


同样贴出我在viso中画出的流程示意图:

 

流程分析:

Map端:

1.每个输入分片会让一个map任务来处理,默认情况下,以HDFS的一个块的大小(默认为64M)为一个分片,当然我们也可以设置块的大小。map输出的结果会暂且放在一个环形内存缓冲区中(该缓冲区的大小默认为100M,由io.sort.mb属性控制),当该缓冲区快要溢出时(默认为缓冲区大小的80%,由io.sort.spill.percent属性控制),会在本地文件系统中创建一个溢出文件,将该缓冲区中的数据写入这个文件。

2.在写入磁盘之前,线程首先根据reduce任务的数目将数据划分为相同数目的分区,也就是一个reduce任务对应一个分区的数据。这样做是为了避免有些reduce任务分配到大量数据,而有些reduce任务却分到很少数据,甚至没有分到数据的尴尬局面。其实分区就是对数据进行hash的过程。然后对每个分区中的数据进行排序,如果此时设置了Combiner,将排序后的结果进行Combia操作,这样做的目的是让尽可能少的数据写入到磁盘。

3.当map任务输出最后一个记录时,可能会有很多的溢出文件,这时需要将这些文件合并。合并的过程中会不断地进行排序和combia操作,目的有两个:1.尽量减少每次写入磁盘的数据量;2.尽量减少下一复制阶段网络传输的数据量。最后合并成了一个已分区且已排序的文件。为了减少网络传输的数据量,这里可以将数据压缩,只要将mapred.compress.map.out设置为true就可以了。

4.将分区中的数据拷贝给相对应的reduce任务。有人可能会问:分区中的数据怎么知道它对应的reduce是哪个呢?其实map任务一直和其父TaskTracker保持联系,而TaskTracker又一直和JobTracker保持心跳。所以JobTracker中保存了整个集群中的宏观信息。只要reduce任务向JobTracker获取对应的map输出位置就ok了哦。

到这里,map端就分析完了。那到底什么是Shuffle呢?Shuffle的中文意思是“洗牌”,如果我们这样看:一个map产生的数据,结果通过hash过程分区却分配给了不同的reduce任务,是不是一个对数据洗牌的过程呢?呵呵。

Reduce端:

1.Reduce会接收到不同map任务传来的数据,并且每个map传来的数据都是有序的。如果reduce端接受的数据量相当小,则直接存储在内存中(缓冲区大小由mapred.job.shuffle.input.buffer.percent属性控制,表示用作此用途的堆空间的百分比),如果数据量超过了该缓冲区大小的一定比例(由mapred.job.shuffle.merge.percent决定),则对数据合并后溢写到磁盘中。

2.随着溢写文件的增多,后台线程会将它们合并成一个更大的有序的文件,这样做是为了给后面的合并节省时间。其实不管在map端还是reduce端,MapReduce都是反复地执行排序,合并操作,现在终于明白了有些人为什么会说:排序是hadoop的灵魂。

3.合并的过程中会产生许多的中间文件(写入磁盘了),但MapReduce会让写入磁盘的数据尽可能地少,并且最后一次合并的结果并没有写入磁盘,而是直接输入到reduce函数。

到这里,MapReduce工作原理终于分析完了,不过我还会继续深入研究,请关注我的后续博客:MapReduce的优化方案。

 

 



已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [mapreduce 工作 原理] 推荐:

MapReduce工作原理图文详解

- - ITeye博客
                                                                      MapReduce工作原理图文详解. 前段时间我们云计算团队一起学习了hadoop相关的知识,大家都积极地做了、学了很多东西,收获颇丰. 可是开学后,大家都忙各自的事情,云计算方面的动静都不太大.

MapReduce原理

- - C++博客-牵着老婆满街逛
       MapReduce 是由Google公司的Jeffrey Dean 和 Sanjay Ghemawat 开发的一个针对大规模群组中的海量数据处理的分布式编程模型. MapReduce实现了两个功能. Map把一个函数应用于集合中的所有成员,然后返回一个基于这个处理的结果集. 而Reduce是把从两个或更多个Map中,通过多个线程,进程或者独立系统并行执行处理的结果集进行分类和归纳.

MapReduce程序的工作过程 - 1000sprites

- - 博客园_首页
     还记得2.5年前就搭建好了Hadoop伪分布式集群,安装好Eclipse后运行成功了WordCount.java,然后学习Hadoop的步伐就变得很慢了,相信有很多小伙伴和我一样. 自己对MR程序(特指Hadoop 1.x版本)的工作过程一直都不是很清楚,现在重点总结一下,为MR编程打好基础.

MapReduce调度与执行原理之作业提交

- - CSDN博客云计算推荐文章
前言:本文旨在理清在Hadoop中一个MapReduce作业(Job)在提交到框架后的整个生命周期过程,权作总结和日后参考,如有问题,请不吝赐教. 本文不涉及Hadoop的架构设计,如有兴趣请参考相关书籍和文献. 在梳理过程中,我对一些感兴趣的源码也会逐行研究学习,以期强化基础. 作者:Jaytalent.

MapReduce调度与执行原理之任务调度

- - CSDN博客云计算推荐文章
前言:本文旨在理清在Hadoop中一个MapReduce作业(Job)在提交到框架后的整个生命周期过程,权作总结和日后参考,如有问题,请不吝赐教. 本文不涉及Hadoop的架构设计,如有兴趣请参考相关书籍和文献. 在梳理过程中,我对一些感兴趣的源码也会逐行研究学习,以期强化基础. 作者:Jaytalent.

Mapreduce小结

- MAGI-CASPER/Peter Pan - 博客园-唯有前进值得敬仰
读完mapreduce论文小结一下. 1.MapReduce是一个编程模型,封装了并行计算、容错、数据分布、负载均衡等细节问题. 输入是一个key-value对的集合,中间输出也是key-value对的集合,用户使用两个函数:Map和Reduce. Map函数接受一个输入的key-value对,然后产生一个中间key-value 对的集合.

Hadoop MapReduce技巧

- - 简单文本
我在使用Hadoop编写MapReduce程序时,遇到了一些问题,通过在Google上查询资料,并结合自己对Hadoop的理解,逐一解决了这些问题. Hadoop对MapReduce中Key与Value的类型是有要求的,简单说来,这些类型必须支持Hadoop的序列化. 为了提高序列化的性能,Hadoop还为Java中常见的基本类型提供了相应地支持序列化的类型,如IntWritable,LongWritable,并为String类型提供了Text类型.

MapReduce优化

- - 行业应用 - ITeye博客
相信每个程序员在 编程时都会问自己两个问题“我如何完成这个任务”,以及“怎么能让程序运行得更快”. 同样,MapReduce计算模型的多次优化也是为了更好地解答这两个问题. MapReduce计算模型的优化涉及了方方面面的内容,但是主要集中在两个方面:一是计算性能方面的优化;二是I/O操作方面的优化.

Spark与Mapreduce?

- - 崔永键的博客
我本人是类似Hive平台的系统工程师,我对MapReduce的熟悉程度是一般,它是我的底层框架. 我隔壁组在实验Spark,想将一部分计算迁移到Spark上. 年初的时候,看Spark的评价,几乎一致表示,Spark是小数据集上处理复杂迭代的交互系统,并不擅长大数据集,也没有稳定性. 但是最近的风评已经变化,尤其是14年10月他们完成了Peta sort的实验,这标志着Spark越来越接近替代Hadoop MapReduce了.

《Hadoop技术内幕:深入解析MapReduce架构设计与实现原理》电子版下载

- - 董的博客
Dong | 新浪微博: 西成懂 | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及 版权声明. 网址: http://dongxicheng.org/mapreduce-nextgen/hadoop-internals-mapreduce/. 本博客的文章集合: http://dongxicheng.org/recommend/.