BloomFilter--大规模数据处理利器

标签: bloomfilter 模数 | 发表时间:2013-10-09 06:18 | 作者:qingen1
出处:http://blog.csdn.net
Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法。通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合。
一. 实例
  为了说明Bloom Filter存在的重要意义,举一个实例:
  假设要你写一个网络蜘蛛(web crawler)。由于网络间的链接错综复杂,蜘蛛在网络间爬行很可能会形成“环”。为了避免形成“环”,就需要知道蜘蛛已经访问过那些URL。给一个URL,怎样知道蜘蛛是否已经访问过呢?稍微想想,就会有如下几种方案:
  1. 将访问过的URL保存到数据库。
  2. 用HashSet将访问过的URL保存起来。那只需接近O(1)的代价就可以查到一个URL是否被访问过了。
  3. URL经过MD5或SHA-1等单向哈希后再保存到HashSet或数据库。
  4. Bit-Map方法。建立一个BitSet,将每个URL经过一个哈希函数映射到某一位。
  方法1~3都是将访问过的URL完整保存,方法4则只标记URL的一个映射位。
  以上方法在数据量较小的情况下都能完美解决问题,但是当数据量变得非常庞大时问题就来了。
  方法1的缺点:数据量变得非常庞大后关系型数据库查询的效率会变得很低。而且每来一个URL就启动一次数据库查询是不是太小题大做了?
  方法2的缺点:太消耗内存。随着URL的增多,占用的内存会越来越多。就算只有1亿个URL,每个URL只算50个字符,就需要5GB内存。
  方法3:由于字符串经过MD5处理后的信息摘要长度只有128Bit,SHA-1处理后也只有160Bit,因此方法3比方法2节省了好几倍的内存。
  方法4消耗内存是相对较少的,但缺点是单一哈希函数发生冲突的概率太高。还记得数据结构课上学过的Hash表冲突的各种解决方法么?若要降低冲突发生的概率到1%,就要将BitSet的长度设置为URL个数的100倍。
二. Bloom Filter的算法
   废话说到这里,下面引入本篇的主角--Bloom Filter。其实上面方法4的思想已经很接近Bloom Filter了。方法四的致命缺点是冲突概率高,为了降低冲突的概念,Bloom Filter使用了多个哈希函数,而不是一个。
   Bloom Filter算法如下:
   创建一个m位BitSet,先将所有位初始化为0,然后选择k个不同的哈希函数。第i个哈希函数对字符串str哈希的结果记为h(i,str),且h(i,str)的范围是0到m-1 。
(1) 加入字符串过程
  下面是每个字符串处理的过程,首先是将字符串str“记录”到BitSet中的过程:
  对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后将BitSet的第h(1,str)、h(2,str)…… h(k,str)位设为1。
  图1.Bloom Filter加入字符串过程
  很简单吧?这样就将字符串str映射到BitSet中的k个二进制位了。
(2) 检查字符串是否存在的过程
  下面是检查字符串str是否被BitSet记录过的过程:
  对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后检查BitSet的第h(1,str)、h(2,str)…… h(k,str)位是否为1,若其中任何一位不为1则可以判定str一定没有被记录过。若全部位都是1,则“认为”字符串str存在。
  若一个字符串对应的Bit不全为1,则可以肯定该字符串一定没有被Bloom Filter记录过。(这是显然的,因为字符串被记录过,其对应的二进制位肯定全部被设为1了)
  但是若一个字符串对应的Bit全为1,实际上是不能100%的肯定该字符串被Bloom Filter记录过的。(因为有可能该字符串的所有位都刚好是被其他字符串所对应)这种将该字符串划分错的情况,称为false positive 。
(3) 删除字符串过程
   字符串加入了就被不能删除了,因为删除会影响到其他字符串。实在需要删除字符串的可以使用Counting bloomfilter(CBF),这是一种基本Bloom Filter的变体,CBF将基本Bloom Filter每一个Bit改为一个计数器,这样就可以实现删除字符串的功能了。
  Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率。
三. Bloom Filter参数选择
   (1)哈希函数选择
     哈希函数的选择对性能的影响应该是很大的,一个好的哈希函数要能近似等概率的将字符串映射到各个Bit。选择k个不同的哈希函数比较麻烦,一种简单的方法是选择一个哈希函数,然后送入k个不同的参数。
   (2)Bit数组大小选择
     哈希函数个数k、位数组大小m、加入的字符串数量n的关系可以参考参考文献1 < http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html>。该文献证明了对于给定的m、n,当 k = ln(2)* m/n 时出错的概率是最小的。
     同时该文献还给出特定的k,m,n的出错概率。例如:根据参考文献1,哈希函数个数k取10,位数组大小m设为字符串个数n的20倍时,false positive发生的概率是0.0000889 ,这个概率基本能满足网络爬虫的需求了。 
四. Bloom Filter实现代码

    下面给出一个简单的Bloom Filter的Java实现代码:

import java.util.BitSet;
public class BloomFilter 
{
    /*  BitSet初始分配2^24个bit  */ 
    private static final int DEFAULT_SIZE = 1 << 25; 
    /* 不同哈希函数的种子,一般应取质数 */
    private static final int[] seeds = new int[] { 5, 7, 11, 13, 31, 37, 61 };
    private BitSet bits = new BitSet(DEFAULT_SIZE);
    /* 哈希函数对象 */ 
    private SimpleHash[] func = new SimpleHash[seeds.length];
    public BloomFilter() 
    {
        for (int i = 0; i < seeds.length; i++)
        {
            func[i] = new SimpleHash(DEFAULT_SIZE, seeds[i]);
        }
    }
    // 将字符串标记到bits中
    public void add(String value) 
    {
        for (SimpleHash f : func) 
        {
            bits.set(f.hash(value), true);
        }
    }
    //判断字符串是否已经被bits标记
    public boolean contains(String value) 
    {
        if (value == null) 
        {
            return false;
        }
        boolean ret = true;
        for (SimpleHash f : func) 
        {
            ret = ret && bits.get(f.hash(value));
        }
        return ret;
    }
    /* 哈希函数类 */
    public static class SimpleHash 
    {
        private int cap;
        private int seed;
        public SimpleHash(int cap, int seed) 
        {
            this.cap = cap;
            this.seed = seed;
        }
        //hash函数,采用简单的加权和hash
        public int hash(String value) 
        {
            int result = 0;
            int len = value.length();
            for (int i = 0; i < len; i++) 
            {
                result = seed * result + value.charAt(i);
            }
            return (cap - 1) & result;
        }
    }
}



作者:qingen1 发表于2013-10-8 22:18:34 原文链接
阅读:99 评论:0 查看评论

相关 [bloomfilter 模数] 推荐:

BloomFilter--大规模数据处理利器

- - CSDN博客云计算推荐文章
Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法. 通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合.   为了说明Bloom Filter存在的重要意义,举一个实例:.   假设要你写一个网络蜘蛛(web crawler).

数据结构之BloomFilter

- - 编程语言 - ITeye博客
BloomFilter是什么.        BloomFilter主要提供两种操作: add()和contains(),作用分别是将元素加入其中以及判断一个元素是否在其中,类似于Java中的Set接口,它内部采用的byte数组来节 省空间. 其独特之处在于contains()方法,当我们需要查询某个元素是否包含在BloomFilter中时,如果返回true,结果可能是不正确 的,也就是元素也有可能不在其中;但是如果返回的是false,那么元素一定不在其中.

Hbase 布隆过滤器BloomFilter介绍

- - CSDN博客推荐文章
bloom filter的数据存在StoreFile的meta中,一旦写入无法更新,因为StoreFile是不可变的. Bloomfilter是一个列族(cf)级别的配置属性,如果你在表中设置了Bloomfilter,那么HBase会在生成StoreFile时包含一份bloomfilter结构的数据,称其为MetaBlock;MetaBlock与DataBlock(真实的KeyValue数据)一起由LRUBlockCache维护.

如何使用bloomfilter构建大型Java缓存系统

- - ImportNew
在如今的软件当中,缓存是解决很多问题的一个关键概念. 你的应用可能会进行CPU密集型运算. 你当然不想让这些运算一边又一边的重复执行,相反,你可以只执行一次, 把这个结果放在内存中作为缓存. 有时系统的瓶颈在I/O操作上,比如你不想重复的查询数据库,你想把结果缓存起来,只在数据发生变化时才去数据查询来更新缓存.

[转][转]数据分析与处理之一:大规模数据分析架构

- - heiyeluren的blog(黑夜路人的开源世界)
随着互联网、移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对海量数据的分析已经成为一个非常重要且紧迫的需求. 按照数据分析的实时性,分为实时数据分析和离线数据分析两种. 实时数据分析一般用于金融、移动网络、物联网和互联网B2C等产品,往往要求系统在数秒内返回上亿行数据的分析,从而才能达到不影响用户体验的目的.

Oracle大规模数据快速导出文本文件 - 王亨 - 博客园

- -
哈喽,前几久,和大家分享过如何把文本数据快速导入数据库(点击即可打开),今天再和大家分享一个小技能,将Oracle数据库中的数据按照指定分割符、指定字段导出至文本文件. 首先来张图,看看导出的数据是什么样子. 用到的就是Oracle的spool命令,可以将数据库数据导出一个文本文件,而且也可以指定数据分隔符,其中!^是数据之间的分隔符.

超大规模数据库集群保稳系列之三:美团数据库容灾体系建设实践 - 美团技术团队

- -
我们通常会把故障分为三大类,一是主机故障,二是机房故障,三是地域故障. 每类故障都有各自的诱发因素,而从主机到机房再到地域,故障发生概率依次越来越小,而故障的影响却越来越大. 容灾能力的建设目标是非常明确的,就是要能够应对和处理这种机房级和地域级的大规模故障,从而来保障业务的连续性. 近几年,业界也发生了多次数据中心级别的故障,对相关公司的业务和品牌产生了非常大的负面影响.