HBase性能优化

标签: hbase 性能优化 | 发表时间:2016-08-11 13:51 | 作者:houston123
出处:http://www.iteye.com
1、修改Linux配置
Linux系统最大可打开文件数一般默认的参数值是1024,如果你不进行修改并发量上来的时候会出现“Too Many Open Files”的错误,导致整个HBase不可运行,你可以用ulimit -n 命令进行修改,或者修改/etc/security/limits.conf 和/proc/sys/fs/file-max的参数,具体如何修改可以去Google 关键字“linux limits.conf ”

2、修改 JVM 配置
修改hbase-env.sh文件中的配置参数
—HBASE_HEAPSIZE 4000 #HBase使用的 JVM 堆的大小
—HBASE_OPTS "‐server ‐XX:+UseConcMarkSweepGC"JVM #GC 选项
—HBASE_MANAGES_ZK false #是否使用Zookeeper进行分布式管理

3、—修改HBase配置
—zookeeper.session.timeout
—默认值:3分钟(180000ms)
说明:RegionServer与Zookeeper间的连接超时时间。当超时时间到后,ReigonServer会被Zookeeper从RS集群清单中移除,HMaster收到移除通知后,会对这台server负责的regions重新balance,让其他存活的RegionServer接管.
调优:
这个timeout决定了RegionServer是否能够及时的failover。设置成1分钟或更低,可以减少因等待超时而被延长的failover时间。
不过需要注意的是,对于一些Online应用,RegionServer从宕机到恢复时间本身就很短的(网络闪断,crash等故障,运维可快速介入),如果调低timeout时间,反而会得不偿失。因为当ReigonServer被正式从RS集群中移除时,HMaster就开始做balance了(让其他RS根据故障机器记录的WAL日志进行恢复)。当故障的RS在人工介入恢复后,这个balance动作是毫无意义的,反而会使负载不均匀,给RS带来更多负担。特别是那些固定分配regions的场景。

4、修改HBase配置:hbase-site.xml
——hbase.regionserver.handler.count
—默认值:10
说明:RegionServer的请求处理IO线程数。
调优:
这个参数的调优与内存息息相关。
较少的IO线程,适用于处理单次请求内存消耗较高的Big PUT场景(大容量单次PUT或设置了较大cache的scan,均属于Big PUT)或ReigonServer的内存比较紧张的场景。
较多的IO线程,适用于单次请求内存消耗低,TPS要求非常高的场景。设置该值的时候,以监控内存为主要参考。
这里需要注意的是如果server的region数量很少,大量的请求都落在一个region上,因快速充满memstore触发flush导致的读写锁会影响全局TPS,不是IO线程数越高越好。
压测时,开启Enabling RPC-level logging,可以同时监控每次请求的内存消耗和GC的状况,最后通过多次压测结果来合理调节IO线程数。

5、修改HBase配置
—
—hbase.hregion.max.filesize
—
默认值:256M
说明:在当前ReigonServer上单个Reigon的最大存储空间,单个Region超过该值时,这个Region会被自动split成更小的region。
调优:
小region对split和compaction友好,因为拆分region或compact小region里的storefile速度很快,内存占用低。缺点是split和compaction会很频繁。
特别是数量较多的小region不停地split, compaction,会导致集群响应时间波动很大,region数量太多不仅给管理上带来麻烦,甚至会引发一些Hbase的bug。
一般512以下的都算小region。
大region,则不太适合经常split和compaction,因为做一次compact和split会产生较长时间的停顿,对应用的读写性能冲击非常大。此外,大region意味着较大的storefile,compaction时对内存也是一个挑战。
当然,大region也有其用武之地。如果你的应用场景中,某个时间点的访问量较低,那么在此时做compact和split,既能顺利完成split和compaction,又能保证绝大多数时间
既然split和compaction如此影响性能,有没有办法去掉?
compaction是无法避免的,split倒是可以从自动调整为手动。
只要通过将这个参数值调大到某个很难达到的值,比如100G,就可以间接禁用自动split(RegionServer不会对未到达100G的region做split)。
再配合RegionSplitter这个工具,在需要split时,手动split。
手动split在灵活性和稳定性上比起自动split要高很多,相反,管理成本增加不多,比较推荐online实时系统使用。平稳的读写性能。
内存方面,小region在设置memstore的大小值上比较灵活,大region则过大过小都不行,过大会导致flush时app的IO wait增高,过小则因store file过多影响读性能。

6、—修改HBase配置
—hbase.regionserver.global.memstore.upperLimit/lowerLimit
—
默认值:0.4/0.35
upperlimit说明:hbase.hregion.memstore.flush.size 这个参数的作用是当单个Region内所有的memstore大小总和超过指定值时,flush该region的所有memstore。RegionServer的flush是通过将请求添加一个队列,模拟生产消费模式来异步处理的。那这里就有一个问题,当队列来不及消费,产生大量积压请求时,可能会导致内存陡增,最坏的情况是触发OOM。
这个参数的作用是防止内存占用过大,当ReigonServer内所有region的memstores所占用内存总和达到heap的40%时,HBase会强制block所有的更新并flush这些region以释放所有memstore占用的内存。
lowerLimit说明: 同upperLimit,只不过lowerLimit在所有region的memstores所占用内存达到Heap的35%时,不flush所有的memstore。它会找一个memstore内存占用最大的region,做个别flush,此时写更新还是会被block。lowerLimit算是一个在所有region强制flush导致性能降低前的补救措施。在日志中,表现为“** Flush thread woke up with memory above low water.”
调优:这是一个Heap内存保护参数,默认值已经能适用大多数场景。
参数调整会影响读写,如果写的压力大导致经常超过这个阀值,则调小读缓存hfile.block.cache.size增大该阀值,或者Heap余量较多时,不修改读缓存大小。
如果在高压情况下,也没超过这个阀值,那么建议你适当调小这个阀值再做压测,确保触发次数不要太多,然后还有较多Heap余量的时候,调大hfile.block.cache.size提高读性能。
还有一种可能性是hbase.hregion.memstore.flush.size保持不变,但RS维护了过多的region,要知道 region数量直接影响占用内存的大小。

7、—修改HBase配置
—hfile.block.cache.size 
—
默认值:0.2
说明:storefile的读缓存占用Heap的大小百分比,0.2表示20%。该值直接影响数据读的性能。
调优:当然是越大越好,如果写比读少很多,开到0.4-0.5也没问题。如果读写较均衡,0.3左右。如果写比读多,果断默认吧。设置这个值的时候,你同时要参考“hbase.regionserver.global.memstore.upperLimit”,该值是memstore占heap的最大百分比,两个参数一个影响读,一个影响写。如果两值加起来超过80-90%,会有OOM的风险,谨慎设置。
—HBase上Regionserver的内存分为两个部分,一部分作为Memstore,主要用来写;另外一部分作为BlockCache,主要用于读。
—写请求会先写入Memstore,Regionserver会给每个region提供一个Memstore,当Memstore满64MB以后,会启动 flush刷新到磁盘。当Memstore的总大小超过限制时(heapsize * hbase.regionserver.global.memstore.upperLimit * 0.9),会强行启动flush进程,从最大的Memstore开始flush直到低于限制。
—读请求先到Memstore中查数据,查不到就到BlockCache中查,再查不到就会到磁盘上读,并把读的结果放入BlockCache。由于BlockCache采用的是LRU策略,因此BlockCache达到上限(heapsize * hfile.block.cache.size * 0.85)后,会启动淘汰机制,淘汰掉最老的一批数据。
—一个Regionserver上有一个BlockCache和N个Memstore,它们的大小之和不能大于等于heapsize * 0.8,否则HBase不能启动。默认BlockCache为0.2,而Memstore为0.4。对于注重读响应时间的系统,可以将 BlockCache设大些,比如设置BlockCache=0.4,Memstore=0.39,以加大缓存的命中率。

8、—修改HBase配置
—hbase.hstore.blockingStoreFiles  
—
默认值:7
说明:在flush时,当一个region中的Store(Coulmn Family)内有超过7个storefile时,则block所有的写请求进行compaction,以减少storefile数量。
调优:block写请求会严重影响当前regionServer的响应时间,但过多的storefile也会影响读性能。从实际应用来看,为了获取较平滑的响应时间,可将值设为无限大。如果能容忍响应时间出现较大的波峰波谷,那么默认或根据自身场景调整即可。

9、—修改HBase配置
—hbase.hregion.memstore.block.multiplier 
—
默认值:2
说明:当一个region里的memstore占用内存大小超过hbase.hregion.memstore.flush.size两倍的大小时,block该region的所有请求,进行flush,释放内存。
虽然我们设置了region所占用的memstores总内存大小,比如64M,但想象一下,在最后63.9M的时候,我Put了一个200M的数据,此时memstore的大小会瞬间暴涨到超过预期的hbase.hregion.memstore.flush.size的几倍。这个参数的作用是当memstore的大小增至超过hbase.hregion.memstore.flush.size 2倍时,block所有请求,遏制风险进一步扩大。
调优: 这个参数的默认值还是比较靠谱的。如果你预估你的正常应用场景(不包括异常)不会出现突发写或写的量可控,那么保持默认值即可。如果正常情况下,你的写请求量就会经常暴长到正常的几倍,那么你应该调大这个倍数并调整其他参数值,比如hfile.block.cache.size和hbase.regionserver.global.memstore.upperLimit/lowerLimit,以预留更多内存,防止HBase server OOM。

10、—修改HBase配置
—
—hbase.hregion.memstore.mslab.enabled 
—
默认值:true
说明:减少因内存碎片导致的Full GC,提高整体性能。
调优: Arena Allocation,是一种GC优化技术,它可以有效地减少因内存碎片导致的Full GC,从而提高系统的整体性能。本文介绍Arena Allocation的原理及其在Hbase中的应用-MSLAB。
开启MSLAB :
—hbase.hregion.memstore.mslab.enabled=true // 开启MSALB
—hbase.hregion.memstore.mslab.chunksize=2m // chunk的大小,越大内存连续性越好,但内存平均利用率会降低
—hbase.hregion.memstore.mslab.max.allocation=256K // 通过MSLAB分配的对象不能超过256K,否则直接在Heap上分配,256K够大了

已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [hbase 性能优化] 推荐:

Hbase 性能优化

- - CSDN博客云计算推荐文章
因 官方Book Performance Tuning部分章节没有按配置项进行索引,不能达到快速查阅的效果. 所以我以配置项驱动,重新整理了原文,并补充一些自己的理解,如有错误,欢迎指正. 默认值:3分钟(180000ms). 说明:RegionServer与Zookeeper间的连接超时时间.

hbase性能优化

- - CSDN博客推荐文章
  当你调用create方法时将会加载两个配置文件:hbase-default.xml and hbase-site.xml,利用的是当前的java类路径, 代码中configuration设置的这些配置将会覆盖hbase-default.xml和hbase-site.xml中相同的配置,如果两个配置文件都存在并且都设置好了相应参上面的属性下面的属性即可.

HBase性能优化

- - zzm
本文主要介绍软件层面的性能调优. 硬盘推荐SSD,一般SATA即可. 可以安装Ganglia等工具,检查各节点的各硬件的运作状态:CPU,Memo,网络等等. 入门级的调优可以从调整参数开始.  设置buffer的容量,例子中设置了6MB的buffer容量. * 必须禁止auto flush. * 6MB是经验值,可以上下微调以适应不同的写场景.

Hbase性能优化之配置

- - 博客园_首页
减少zk超时时间(建议1分钟). Rs与zk的timeout默认为3分钟,由zookeeper.session.timeout property决定. 也就是说,如果一个rs挂了,那么master需要3分钟之后才能对其进行重启和恢复. 然而,你调低之前应该先确保JVM的配置合理,保证不会引发较长的gc,JVM配置之后会给出,也可以只这样,只要你超时时间可以忍受gc停顿即可.

HBase性能优化方法总结

- - IT技术博客大学习
标签:   HBase.     本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法. 有关HBase系统配置级别的优化,这里涉及的不多,这部分可以参考: 淘宝Ken Wu同学的博客.     默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户端都向这一个region写数据,直到这个region足够大了才进行切分.

Hbase性能优化 - 季石磊

- - 博客园_stanley's blog
以下为使用hbase一段时间的几个思考,由于在内存充足的情况下hbase能提供比较满意的读性能,因此写性能是思考的重点.     无论是官方还是很多blog都提倡为了提高hbase的写入速度而在应用代码中设置autoflush=false,然后在在线应用中应该谨慎进行该设置.     a autoflush=false的原理是当客户端提交delete或put请求时,将该请求在客户端缓存,直到数据超过2M(hbase.client.write.buffer决定)或用户执行了hbase.flushcommits()时才向regionserver提交请求.

HBase最佳实践-写性能优化策略 – 有态度的HBase/Spark/BigData

- -
上一篇文章主要介绍了HBase读性能优化的基本套路,本篇文章来说道说道如何诊断HBase写数据的异常问题以及优化写性能. 和读相比,HBase写数据流程倒是显得很简单:数据先顺序写入HLog,再写入对应的缓存Memstore,当Memstore中数据大小达到一定阈值(128M)之后,系统会异步将Memstore中数据flush到HDFS形成小文件.

HBase最佳实践-读性能优化策略 – 有态度的HBase/Spark/BigData

- -
任何系统都会有各种各样的问题,有些是系统本身设计问题,有些却是使用姿势问题. HBase也一样,在真实生产线上大家或多或少都会遇到很多问题,有些是HBase还需要完善的,有些是我们确实对它了解太少. 总结起来,大家遇到的主要问题无非是Full GC异常导致宕机问题、RIT问题、写吞吐量太低以及读延迟较大.

Pora2应用中HBase高并发读写性能优化

- - 搜索技术博客-淘宝
淘宝搜索的个性化离线实时分析系统Pora已升级至Pora2,Pora2是在基于Yarn的流式计算框架IStream基础上开发的,同时为保证数据和消息的实时处理系统中较多地使用了HBase,是一个典型的高并发读写HBase的分布式应用. 系统在发布之初遇到了比较严重的性能问题,表现为处理速度跟不上实时日志,并且整个Hadoop/HBase集群压力大,连带其它应用受影响.