关键词推荐工具中的用户引导机制

标签: 信息检索 推荐系统 搜索引擎 数据挖掘 设计哲学 | 发表时间:2013-11-05 03:54 | 作者:admin
出处:http://www.semocean.com
搜索引擎根据网民输入的检索词(query)猜测网民需要的信息, 之后进行检索, 排序后将相关的信息展现给网民。 因为网名输入的query一般都较短, 而且不同的网民使用搜索引擎的能力也不一样。 所以一般搜索引擎都会有些查询引导机制, 在猜测用户可能的意图后, 推荐一些相关且高质量的种子query给网民。例如在百度搜索框搜索‘关键词工具’,在搜索结果的最下方,出现以下相关搜索结果:
这些相关搜索结果均是根据网民搜索session和网民搜索点击结果挖掘而来(因可能涉及泄密,百度的具体实现此处就不再介绍, 后续会有博文介绍业界相关相关搜索结果的论文), 这些(推荐)query一方面从搜索意图上和网民的搜索意图匹配, 一方面和也能够达到引流的作用,例如能够快速引导网民找到需要的内容, 或者考虑商业变现因素, 能够将搜索引导向与搜索意图匹配且有商业价值的搜索上, 提升搜索引擎的变现效率。
而作为完整的关键词推荐工具, 不仅要能主动分析推荐结果给客户(关键词工具的用户为搜索引擎的商业客户,及广告投放客户), 在用户输入种子query后展现相关结果给客户,还需要在客户操作的每一步, 对客户的行为进行提示和引导。
关键词工具引导机制的功能
关键词推荐工具不仅能根据用户历史行为主动向用户push相关关键词,同时提供搜索功能, 供用户输入种子query后推荐出相关的关键词。 此时就会面临和搜索引擎一样的问题, 用户输入query的质量,将会直接决定推荐结果的好坏, 所以关键词推荐系统需要有完善的引导机制, 提升用户输入query的质量,以便提升整体的推荐质量。
上图为KR关键词推荐工具
引导机制的类型及简单实现思路
一般说来, 根据用户使用关键词工具的交互操作,按照交互阶段,可以将引导机制分为以下三类:
  1. 查询前: 在用户进入关键词工具时, 还未有任何交互时,此时关键词推荐系统主动向用户push用户可能感兴趣的种子query; 具体实现时,可以根据客户历史上采纳的搜索引擎拍卖词(即客户采纳的符合客户客户推广意图的关键词)分析出客户的推广意图或业务点, 使用传统推荐算法(content-based 或 collaborative 推荐算法)找出客户可能感兴趣的种子query进行推荐。该场景更偏推荐问题
  2. 查询中: 即用户已经开始在关键词工具搜索框中进行输入,但输入还未完成的阶段。此时最常采用的方式是使用suggesion的方式,结合客户当前输入,向用户推荐完整的高质量query;具体suggesion挖掘,可以找到一些高频的query,结合session数据,搜索点击数据进行挖掘(百度suggesion具体的算法此处涉及泄密不再介绍,后续会有文章介绍业界公开的suggesion方法)
  3. 查询后: 当客户完成一次搜索后, 客户搜索的内容已经基本明确, 此时就可以根据这次用户的搜索意图,找到相关的更高质量的query,以类似于搜索引擎相关搜索的方式推荐给客户。
引导机制在整个系统中的地位
引导机制无论是在搜索引擎中, 或是关键词推荐系统中, 都是必不可少的功能环节,能够带来以下收益:
  1. 推荐给客户能有多而好的检索结果的种子词,并逐步进行优化,提升用户体验,提高客户提词量;对于搜索引擎而言是优化输入query。
  2. 降低未曾使用过KR的客户的使用门槛,让KR的使用更为简单便利,扩大关键词工具的市场占有率;对于搜索引擎而言, 也能够快速提升其他用户经常搜索的相同/类似意图的query给网民,提升搜索量。
  3. 通过种子词引导客户对账户关键词的优化,提高客户的ROI,提升百度收益,达到双赢目的。对搜索引擎而言则是能将搜索引导至相同/类似意图的搜索上,提升搜索引擎的变现效率。
如对以上功能感兴趣, 各位可以在www2.baidu.com上注册一个凤巢帐号(无需缴费), 在百度凤巢系统中的关键词工具中试用上述功能。
更多内容参见:
百度凤巢系统: www2.baidu.com
suggestion的一种实现方法: Cao, Huanhuan, et al. 2008. Context-Aware Query Suggestion by Mining Click-Through and Session Data. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2008, 875-883.
也可关注我的微博:   weibo.com/dustinsea
或是直接访问: http://semocean.com

相关 [关键词 工具 用户] 推荐:

关键词推荐工具中的用户引导机制

- - Semocean
搜索引擎根据网民输入的检索词(query)猜测网民需要的信息, 之后进行检索, 排序后将相关的信息展现给网民. 因为网名输入的query一般都较短, 而且不同的网民使用搜索引擎的能力也不一样. 所以一般搜索引擎都会有些查询引导机制, 在猜测用户可能的意图后, 推荐一些相关且高质量的种子query给网民.

关键词推荐工具中的用户引导机制之二:suggestion架构

- - CSDN博客互联网推荐文章
在《 关键词推荐工具中的用户引导机制之一》 我们分析了用户用到机制对搜索引擎/关键词工具的重要性,同时也提到按照用户在搜索引擎/或者关键词工具上交互的阶段,可以按交互前,交互中和交互后为用户分别提供种子query,suggestion和相关搜索词对用户进行引导. 种子query是比较经典的推荐问题, 对于‘相关搜索’,后续会有博文专门介绍, 该文以下内容主要介绍如何构造高效的suggestion服务.

关键词推荐工具中的用户引导机制之四:种子query推荐

- - 海之沙
上一篇《 关键词推荐工具中的用户引导机制之三:相关搜索query技术》中, 我们提到可使用用户query-点击日志,session数据,及网页内容,挖掘与query意图相关(同时具有变现价值)的相query推荐给客户引导用户优化搜索. 如用户还未输入,此时搜索引擎默认直接展示搜索框. 但在关键词推荐系统中,更好的选择是push与用户相关高质量query,帮助用户高效发现兴趣点,本文将介绍在关键词推荐系统中,实现种子词推荐产品及策略.

转载:免费的用户界面设计工具,工具包和资源

- Betula - Axure教程|手机交互设计|手机产品设计
来源:免费的用户界面设计工具,工具包和资源    发贴会员:图图网-sunqilong. 都是一些UI界面与设计使用的元素,软件,网站等. 内容很丰富,适合网页设计师,用户体验设计师,界面设计师,产品设计师,JS前段开发,手机产品设计,ipad产品设计等使用. Lumzy是一个网站应用和原型界面制作工具.

Kindle工具大集合啦:17种Kindle用户必备的软件工具

- fan - FeedzShare
来自: www.yeeyan.org - FeedzShare  . 发布时间:2011年09月04日,  已有 3 人推荐. This post compiles 17 of these that every Kindle user should know about, ranging from eBook conversion programs to services that can broadcast your favorite websites to your Kindle..

官方媒体谴责新浪微博过滤关键词

- ivan - Solidot
官方媒体新华社-中国网事在腾讯微博发帖谴责新浪微博,指责新浪微博过滤关键词“达芬奇”. 中国网事称,“新浪微博为何助纣为虐. 近一段时间以来,凡是在新浪微博上发布的有关“达芬奇”的帖子都无端被“封杀”:帖子只有自己能看见,而粉丝和公屏都不显示,其中包括新华社中国网事昨日发布的有关帖子. 经过有关交涉后,该微博于12日下午六时左右暂时恢复“达芬奇”这个它们设定的敏感词.

Tango 的蛛丝马迹:关键词是诺基亚,低价…

- SotongDJ - 爱范儿 · Beats of Bits
直到今天为止,关于微软 Windows Phone 演进版本的信息仍然不多,大概的关键词是这么几个:. Mango :今年秋天的重要版本,有数百项更新,已经进入 RTM 阶段. Tango:在 Mango 之后的版本. Apollo:Windows Phone 8 的开发代号. 微软这次的习惯是,开发代号皆以“o”结尾(包括之前的 NoDo).

Google开始审查BitTorrent、RapidShare等关键词

- bubble - Solidot
Google屈从于MPAA和RIAA等的压力,开始在即时搜索和自动完成功能中审查BitTorrent、torrent、utorrent、RapidShare和Megaupload等关键词. 数周前,Google宣布它将在即时搜索和自动完成功能中过滤到与盗版相关的关键词. 26日,在没有发表正式声明的情况下它开始部署这项功能,部分地区的Google用户在搜索框内输入BitTorrent、torrent、utorrent、RapidShare和Megaupload等关键词将不会显示搜索提示.

文本分析漫谈-分类器中的关键词提取

- flychen50 - UGC广播站
作者:人人网UGC团队成员 刘威 人人网UGC团队博客. 面对人人网海量的UGC,数据挖掘工作势在必行,能把用户最想要的信息推荐出来,是我们正在研究的课题之一. 在推荐系统中,分类器是个非常重要的部分. 分类器的研究重点落在两个方面,一方面是文本关键词的提取,一方面是对已有关键词或标签的文本进行训练分类.