MySQL 对于千万级的大表要怎么优化?

标签: mysql 千万 大表 | 发表时间:2017-12-01 08:37 | 作者:dy.f
出处:http://www.iteye.com

MySQL 对于千万级的大表要怎么优化?
https://www.zhihu.com/question/19719997

 

作者:zhuqz
链接:https://www.zhihu.com/question/19719997/answer/81930332
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

很多人第一反应是各种切分;我给的顺序是:
第一优化你的sql和索引;

第二加缓存,memcached,redis;

第三以上都做了后,还是慢,就做主从复制或主主复制,读写分离,可以在应用层做,效率高,也可以用三方工具,第三方工具推荐360的atlas,其它的要么效率不高,要么没人维护;

第四如果以上都做了还是慢,不要想着去做切分,mysql自带分区表,先试试这个,对你的应用是透明的,无需更改代码,但是sql语句是需要针对分区表做优化的,sql条件中要带上分区条件的列,从而使查询定位到少量的分区上,否则就会扫描全部分区,另外分区表还有一些坑,在这里就不多说了;

第五如果以上都做了,那就先做垂直拆分,其实就是根据你模块的耦合度,将一个大的系统分为多个小的系统,也就是分布式系统;

第六才是水平切分,针对数据量大的表,这一步最麻烦,最能考验技术水平,要选择一个合理的sharding key,为了有好的查询效率,表结构也要改动,做一定的冗余,应用也要改,sql中尽量带sharding key,将数据定位到限定的表上去查,而不是扫描全部的表;

mysql数据库一般都是按照这个步骤去演化的,成本也是由低到高;

有人也许要说第一步优化sql和索引这还用说吗?的确,大家都知道,但是很多情况下,这一步做的并不到位,甚至有的只做了根据sql去建索引,根本没对sql优化(中枪了没?),除了最简单的增删改查外,想实现一个查询,可以写出很多种查询语句,不同的语句,根据你选择的引擎、表中数据的分布情况、索引情况、数据库优化策略、查询中的锁策略等因素,最终查询的效率相差很大;优化要从整体去考虑,有时你优化一条语句后,其它查询反而效率被降低了,所以要取一个平衡点;即使精通mysql的话,除了纯技术面优化,还要根据业务面去优化sql语句,这样才能达到最优效果;你敢说你的sql和索引已经是最优了吗?

再说一下不同引擎的优化,myisam读的效果好,写的效率差,这和它数据存储格式,索引的指针和锁的策略有关的,它的数据是顺序存储的(innodb数据存储方式是聚簇索引),他的索引btree上的节点是一个指向数据物理位置的指针,所以查找起来很快,(innodb索引节点存的则是数据的主键,所以需要根据主键二次查找);myisam锁是表锁,只有读读之间是并发的,写写之间和读写之间(读和插入之间是可以并发的,去设置concurrent_insert参数,定期执行表优化操作,更新操作就没有办法了)是串行的,所以写起来慢,并且默认的写优先级比读优先级高,高到写操作来了后,可以马上插入到读操作前面去,如果批量写,会导致读请求饿死,所以要设置读写优先级或设置多少写操作后执行读操作的策略;myisam不要使用查询时间太长的sql,如果策略使用不当,也会导致写饿死,所以尽量去拆分查询效率低的sql,

innodb一般都是行锁,这个一般指的是sql用到索引的时候,行锁是加在索引上的,不是加在数据记录上的,如果sql没有用到索引,仍然会锁定表,mysql的读写之间是可以并发的,普通的select是不需要锁的,当查询的记录遇到锁时,用的是一致性的非锁定快照读,也就是根据数据库隔离级别策略,会去读被锁定行的快照,其它更新或加锁读语句用的是当前读,读取原始行;因为普通读与写不冲突,所以innodb不会出现读写饿死的情况,又因为在使用索引的时候用的是行锁,锁的粒度小,竞争相同锁的情况就少,就增加了并发处理,所以并发读写的效率还是很优秀的,问题在于索引查询后的根据主键的二次查找导致效率低;

ps:很奇怪,为什innodb的索引叶子节点存的是主键而不是像mysism一样存数据的物理地址指针吗?如果存的是物理地址指针不就不需要二次查找了吗,这也是我开始的疑惑,根据mysism和innodb数据存储方式的差异去想,你就会明白了,我就不费口舌了!

所以innodb为了避免二次查找可以使用索引覆盖技术,无法使用索引覆盖的,再延伸一下就是基于索引覆盖实现延迟关联;不知道什么是索引覆盖的,建议你无论如何都要弄清楚它是怎么回事!

尽你所能去优化你的sql吧!说它成本低,却又是一项费时费力的活,需要在技术与业务都熟悉的情况下,用心去优化才能做到最优,优化后的效果也是立竿见影的!


已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [mysql 千万 大表] 推荐:

MySQL 对于千万级的大表要怎么优化?

- - 数据库 - ITeye博客
MySQL 对于千万级的大表要怎么优化. 链接:https://www.zhihu.com/question/19719997/answer/81930332. 商业转载请联系作者获得授权,非商业转载请注明出处. 很多人第一反应是各种切分;我给的顺序是:. 第二加缓存,memcached,redis;.

MySQL 大表优化方案

- - 文章 – 伯乐在线
当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化:. 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在 千万级以下,字符串为主的表在 五百万以下是没有太大问题的. 而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量:.

mysql删除大表更快的drop table办法

- 胖岁 - haohtml&#39;s blog
曾经发文介绍过,DROP table XXX ,特别是碰到大表时,. 在DROP TABLE 过程中,所有操作都会被HANG住. 这是因为INNODB会维护一个全局独占锁(在table cache上面),直到DROP TABLE完成才释放. 在我们常用的ext3,ext4,ntfs文件系统,要删除一个大文件(几十G,甚至几百G)还是需要点时间的.

Linux Ksplice,MySQL and Oracle

- Syn - DBA Notes
Oracle 在 7 月份收购了 Ksplice. 使用了 Ksplice 的 Linux 系统,为 Kernel 打补丁无需重启动,做系统维护的朋友应该明白这是一个杀手级特性. 现在该产品已经合并到 Oracle Linux 中. 目前已经有超过 700 家客户,超过 10 万套系统使用了 Ksplice (不知道国内是否已经有用户了.

MySQL Replication 线程

- - CSDN博客推荐文章
Replication 线程. Mysql 的Replication 是一个异步的复制过程,从一个Mysql instace(我们称之为Master)复制到另一个Mysql instance(我们称之Slave). 在Master 与Slave 之间的实现整个复制过程主. 要由三个线程来完成,其中两个线程(Sql 线程和IO 线程)在Slave 端,另外一个线程(IO 线程)在Master 端.

mysql backup 脚本

- - ITeye博客
网上备份脚本很多,但考虑都不周全. 保证创建备份文件只能是创建者跟root可以访问,其他用户没有权限,保证了数据库备份的安全. 上面脚本是负责备份的份数管理,. 已有 0 人发表留言,猛击->> 这里<<-参与讨论. —软件人才免语言低担保 赴美带薪读研.

Oracle MySQL Or NoSQL续

- - Sky.Jian 朝阳的天空
接前面一篇,这里再将之前在“中国系统架构师大会”5周年的时候发布的纪念册“IT架构实录”上的一篇文章发出来,也算是前面博文中PPT的一个文字版解读吧. Oracle,MySQL 还是 NoSQL. 随着阿里系的“去IOE”运动在社区的宣传声越来越大,国内正在掀起一股“去xxx”的技术潮. 不仅仅是互联网企业,包括运营商以及金融机构都已经开始加入到这个潮流之中.

mysql优化

- - 数据库 - ITeye博客
公司网站访问量越来越大,MySQL自然成为瓶颈,因此最近我一直在研究 MySQL  的优化,第一步自然想到的是 MySQL 系统参数的优化,作为一个访问量很大的网站(日20万人次以上)的数据库系统,不可能指望 MySQL  默认的系统参数能够让 MySQL运行得非常顺畅. 在Apache, PHP,  MySQL的体系架构中,MySQL对于性能的影响最大,也是关键的核心部分.

MySql动态SQL

- - SQL - 编程语言 - ITeye博客
13.7. 用于预处理语句的SQL语法. MySQL 5.1对服务器一方的预制语句提供支持. 如果您使用合适的客户端编程界面,则这种支持可以发挥在MySQL 4.1中实施的高效客户端/服务器二进制协议的优势. 候选界面包括MySQL C API客户端库(用于C程序)、MySQL Connector/J(用于Java程序)和MySQL Connector/NET.

MySQL 性能

- - 谁主沉浮
这里罗列了一些基本的 MySQL 性能提示,但不是放之四海而皆准,需要根据实际的应用情况而决定. 使用标准化设计(数据库三范式),记住表的联合查询(join)性能不会差. 选择合适的字符集,虽然UTF16无所不能,但需要两倍的存储;UTF8适合各种字符,但比latin1慢,尽可能选用latin1(此条不适合中文).