Java 虚拟机 7:内存分配原则

标签: 基础技术 JVM | 发表时间:2018-03-26 18:45 | 作者:TiuVe2
出处:http://www.importnew.com

前言

对象的内存分配,往大的方向上讲,就是在堆上分配,少数情况下也可能会直接分配在老年代中,分配的规则并不是百分之百固定的,其细节决定于当前使用的是哪种垃圾收集器组合,当然还有虚拟机中与内存相关的参数。垃圾收集器组合一般就是Serial+Serial Old和Parallel+Serial Old,前者是Client模式下的默认垃圾收集器组合,后者是Server模式下的默认垃圾收集器组合,文章使用对比学习法对比Client模式下和Server模式下同一条对象分配原则有什么区别。

TLAB

首先讲讲什么是TLAB。内存分配的动作,可以按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存,称为本地线程分配缓冲(Thread Local Allocation Buffer,TLAB)。哪个线程需要分配内存,就在哪个线程的TLAB上分配。虚拟机是否使用TLAB,可以通过-XX:+/-UseTLAB参数来设定。这么做的目的之一,也是为了并发创建一个对象时,保证创建对象的线程安全性。TLAB比较小,直接在TLAB上分配内存的方式称为快速分配方式,而TLAB大小不够,导致内存被分配在Eden区的内存分配方式称为慢速分配方式。

对象优先分配在Eden区上

上面讲了不同的垃圾收集器组合对于内存分配规则是有影响的,看下影响在什么地方并解释一下原因,虚拟机参数为“-verbose:gc -XX:+PrintGCDetails -Xms20M -Xmx20M -Xmn10M -XX:SurvivorRatio=8”,即10M新生代,10M老年代,10M新生代中8M的Eden区,两个Survivor区各1M。代码都是同一段

public class EdenAllocationTest
{
    private static final int _1MB = 1024 * 1024;
    
    public static void main(String[] args)
    {
        byte[] allocation1 = new byte[2 * _1MB];
        byte[] allocation2 = new byte[2 * _1MB];
        byte[] allocation3 = new byte[2 * _1MB];
        byte[] allocation4 = new byte[4 * _1MB];
    }
}

Client模式下

[GC [DefNew: 6487K->194K(9216K), 0.0042856 secs] 6487K->6338K(19456K), 0.0043281 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
Heap
 def new generation   total 9216K, used 4454K [0x0000000005180000, 0x0000000005b80000, 0x0000000005b80000)
  eden space 8192K,  52% used [0x0000000005180000, 0x00000000055a9018, 0x0000000005980000)
  from space 1024K,  18% used [0x0000000005a80000, 0x0000000005ab0810, 0x0000000005b80000)
  to   space 1024K,   0% used [0x0000000005980000, 0x0000000005980000, 0x0000000005a80000)
 tenured generation   total 10240K, used 6144K [0x0000000005b80000, 0x0000000006580000, 0x0000000006580000)
   the space 10240K,  60% used [0x0000000005b80000, 0x0000000006180048, 0x0000000006180200, 0x0000000006580000)
 compacting perm gen  total 21248K, used 2982K [0x0000000006580000, 0x0000000007a40000, 0x000000000b980000)
   the space 21248K,  14% used [0x0000000006580000, 0x0000000006869890, 0x0000000006869a00, 0x0000000007a40000)
No shared spaces configured.

Server模式下

Heap
 PSYoungGen      total 9216K, used 6651K [0x000000000af20000, 0x000000000b920000, 0x000000000b920000)
  eden space 8192K, 81% used [0x000000000af20000,0x000000000b59ef70,0x000000000b720000)
  from space 1024K, 0% used [0x000000000b820000,0x000000000b820000,0x000000000b920000)
  to   space 1024K, 0% used [0x000000000b720000,0x000000000b720000,0x000000000b820000)
 PSOldGen        total 10240K, used 4096K [0x000000000a520000, 0x000000000af20000, 0x000000000af20000)
  object space 10240K, 40% used [0x000000000a520000,0x000000000a920018,0x000000000af20000)
 PSPermGen       total 21248K, used 2972K [0x0000000005120000, 0x00000000065e0000, 0x000000000a520000)
  object space 21248K, 13% used [0x0000000005120000,0x0000000005407388,0x00000000065e0000)

看到在 Client模式下,最后分配的4M在新生代中,先分配的6M在老年代中;在Server模式下,最后分配的4M在老年代中,先分配的6M在新生代中。说明不同的垃圾收集器组合对于对象的分配是有影响的。讲下两者差别的原因:

1、Client模式下,新生代分配了6M,虚拟机在GC前有6487K,比6M也就是6144K多,多主要是因为TLAB和EdenAllocationTest这个对象占的空间,TLAB可以通过“-XX:+PrintTLAB”这个虚拟机参数来查看大小。OK,6M多了,然后来了一个4M的,Eden+一个Survivor总共就9M不够分配了,这时候就会触发一次Minor GC。但是触发Minor GC也没用,因为allocation1、allocation2、allocation3三个引用还存在,另一块1M的Survivor也不够放下这6M,那么这次Minor GC的效果其实是通过分配担保机制将这6M的内容转入老年代中。然后再来一个4M的,由于此时Minor GC之后新生代只剩下了194K了,够分配了,所以4M顺利进入新生代。

2、Server模式下,前面都一样,但是在GC的时候有一点区别。在GC前还会进行一次判断,如果要分配的内存>=Eden区大小的一半,那么会直接把要分配的内存放入老年代中。要分配4M,Eden区8M,刚好一半,而且老年代10M,够分配,所以4M就直接进入老年代去了。为了验证一下结论,我们把3个2M之后分配的4M改为3M看一下

public class EdenAllocationTest
{
    private static final int _1MB = 1024 * 1024;
    
    public static void main(String[] args)
    {
        byte[] allocation1 = new byte[2 * _1MB];
        byte[] allocation2 = new byte[2 * _1MB];
        byte[] allocation3 = new byte[2 * _1MB];
        byte[] allocation4 = new byte[3 * _1MB];
    }
}

运行结果为

[GC [PSYoungGen: 6487K->352K(9216K)] 6487K->6496K(19456K), 0.0035661 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
[Full GC [PSYoungGen: 352K->0K(9216K)] [PSOldGen: 6144K->6338K(10240K)] 6496K->6338K(19456K) [PSPermGen: 2941K->2941K(21248K)], 0.0035258 secs] [Times: user=0.02 sys=0.00, real=0.00 secs] 
Heap
 PSYoungGen      total 9216K, used 3236K [0x000000000af40000, 0x000000000b940000, 0x000000000b940000)
  eden space 8192K, 39% used [0x000000000af40000,0x000000000b269018,0x000000000b740000)
  from space 1024K, 0% used [0x000000000b740000,0x000000000b740000,0x000000000b840000)
  to   space 1024K, 0% used [0x000000000b840000,0x000000000b840000,0x000000000b940000)
 PSOldGen        total 10240K, used 6338K [0x000000000a540000, 0x000000000af40000, 0x000000000af40000)
  object space 10240K, 61% used [0x000000000a540000,0x000000000ab70858,0x000000000af40000)
 PSPermGen       total 21248K, used 2982K [0x0000000005140000, 0x0000000006600000, 0x000000000a540000)
  object space 21248K, 14% used [0x0000000005140000,0x0000000005429890,0x0000000006600000)

看到3M在新生代中,6M通过分配担保机制进入老年代了。

大对象直接进入老年代

虚拟机参数为“-XX:+PrintGCDetails -Xms20M -Xmx20M -Xmn10M -XX:SurvivorRatio=8 -XX:PretenureSizeThreshold=3145728”,最后那个参数表示大于这个设置值的对象直接在老年代中分配,这样做的目的是为了避免在Eden区和两个Survivor区之间发生大量的内存复制。测试代码为

public class OldTest
{
    private static final int _1MB = 1024 * 1024;
    
    public static void main(String[] args)
    {
         byte[] allocation = new byte[4 * _1MB];
    }
}

Client模式下

Heap
 def new generation   total 9216K, used 507K [0x0000000005140000, 0x0000000005b40000, 0x0000000005b40000)
  eden space 8192K,   6% used [0x0000000005140000, 0x00000000051bef28, 0x0000000005940000)
  from space 1024K,   0% used [0x0000000005940000, 0x0000000005940000, 0x0000000005a40000)
  to   space 1024K,   0% used [0x0000000005a40000, 0x0000000005a40000, 0x0000000005b40000)
 tenured generation   total 10240K, used 4096K [0x0000000005b40000, 0x0000000006540000, 0x0000000006540000)
   the space 10240K,  40% used [0x0000000005b40000, 0x0000000005f40018, 0x0000000005f40200, 0x0000000006540000)
 compacting perm gen  total 21248K, used 2972K [0x0000000006540000, 0x0000000007a00000, 0x000000000b940000)
   the space 21248K,  13% used [0x0000000006540000, 0x00000000068272a0, 0x0000000006827400, 0x0000000007a00000)
No shared spaces configured.

Server模式下

Heap
 PSYoungGen      total 9216K, used 4603K [0x000000000afc0000, 0x000000000b9c0000, 0x000000000b9c0000)
  eden space 8192K, 56% used [0x000000000afc0000,0x000000000b43ef40,0x000000000b7c0000)
  from space 1024K, 0% used [0x000000000b8c0000,0x000000000b8c0000,0x000000000b9c0000)
  to   space 1024K, 0% used [0x000000000b7c0000,0x000000000b7c0000,0x000000000b8c0000)
 PSOldGen        total 10240K, used 0K [0x000000000a5c0000, 0x000000000afc0000, 0x000000000afc0000)
  object space 10240K, 0% used [0x000000000a5c0000,0x000000000a5c0000,0x000000000afc0000)
 PSPermGen       total 21248K, used 2972K [0x00000000051c0000, 0x0000000006680000, 0x000000000a5c0000)
  object space 21248K, 13% used [0x00000000051c0000,0x00000000054a72a0,0x0000000006680000)

看到 Client模式下4M直接进入了老年代,Server模式下4M还在新生代中。产生这个差别的原因是 “-XX:PretenureSizeThreshold”这个参数对Serial+Serial Old垃圾收集器组合有效而对Parallel+Serial Old垃圾收集器组合无效

其他几条原则

上面列举的原则其实不重要,只是演示罢了,也不需要记住,因为实际过程中我们可能使用的并不是上面的垃圾收集器的组合,可能使用ParNew垃圾收集器,可能使用G1垃圾收集器。场景很多,重要的是要在实际使用的时候有办法知道使用的垃圾收集器对于对象分配有哪些原则,因为理解这些原则才是调优的第一步。下面列举一下对象分配的另外两条原则:

1、长期存活的对象将进入老年代。Eden区中的对象在一次Minor GC后没有被回收,则对象年龄+1,当对象年龄达到“-XX:MaxTenuringThreshold”设置的值的时候,对象就会被晋升到老年代中。

2、Survivor空间中相同年龄的所有对象大小总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到“-XX:MaxTenuringThreshold”设置要求的年龄。

相关文章

相关 [java 虚拟机 内存] 推荐:

Java虚拟机学习 - 内存调优

- - CSDN博客推荐文章
JVM调优主要是针对内存管理方面的调优,包括控制各个代的大小,GC策略. 由于GC开始垃圾回收时会挂起应用线程,严重影响了性能,调优的目是为了尽量降低GC所导致的应用线程暂停时间、 减少Full GC次数. 最关键参数:-Xms、 -Xmx 、-Xmn 、-XX:SurvivorRatio、-XX:MaxTenuringThreshold、-XX:PermSize、-XX:MaxPermSize.

java虚拟机的内存区域划分

- - CSDN博客推荐文章
         java虚拟机在执行java程序的过程中会把它所管理的内存划分成很多个不同的数据区域. 这些区域都有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而存在,有些区域则是依赖用户线程的启动和结束而建立和销毁. Java虚拟机规范中把java虚拟机所管理的内存划分为以下几个区域.

深入Java虚拟机之内存优化

- - ITeye博客
前面一篇文章介绍了Java虚拟机的体系结构和内存模型,既然提到内存,就不得不说到内存泄露. 众所周知,Java是从C++的基础上发展而来的,而C++程序的很大的一个问题就是内存泄露难以解决,尽管Java的JVM有一套自己的垃圾回收机制来回收内存,在许多情况下并不需要java程序开发人员操太多的心,但也是存在泄露问题的,只是比C++小一点.

Java虚拟机(JVM)中的内存设置详解及优化

- - Java - 编程语言 - ITeye博客
JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制. 32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制. 我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m.

探秘Java虚拟机——内存管理与垃圾回收

- - 编程语言 - ITeye博客
探秘Java虚拟机——内存管理与垃圾回收. 本文主要是基于Sun JDK 1.6 Garbage Collector(作者:毕玄)的整理与总结,原文请读者在网上搜索. 1、Java虚拟机运行时的数据区. 2、常用的内存区域调节参数. -Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制.

Java 虚拟机 7:内存分配原则

- - ImportNew
对象的内存分配,往大的方向上讲,就是在堆上分配,少数情况下也可能会直接分配在老年代中,分配的规则并不是百分之百固定的,其细节决定于当前使用的是哪种垃圾收集器组合,当然还有虚拟机中与内存相关的参数. 垃圾收集器组合一般就是Serial+Serial Old和Parallel+Serial Old,前者是Client模式下的默认垃圾收集器组合,后者是Server模式下的默认垃圾收集器组合,文章使用对比学习法对比Client模式下和Server模式下同一条对象分配原则有什么区别.

Java虚拟机家族考

- ReadReply - 博客园新闻频道
  说起Java虚拟机,许多Java程序员都会潜意识地把它与Sun[1] HotSpot虚拟机等同看待,也许还有一些程序员会注意到BEA JRockit和IBM J9,但大多数人对JVM的认识都仅限于此了.   从1996年初Sun发布的JDK 1.0中所包含的Sun Classic VM算起,Java虚拟机已经发展了15个年头,沧海桑田一瞬间,15年转眼而过,这期间曾经涌现、湮灭过许多或经典或优秀或有特色的虚拟机实现,在《Java虚拟机专栏》的第1篇中,我们先暂且把代码与技术放下,一起来回顾一下Java虚拟机家族的发展轨迹和历史变迁.

文章: Java虚拟机家族考

- Haides - InfoQ中文站
说起Java虚拟机,许多Java程序员都会潜意识地把它与Sun HotSpot虚拟机等同看待,也许还有一些程序员会注意到BEA JRockit和IBM J9,但大多数人对JVM的认识都仅限于此了. 从1996年初Sun发布的JDK 1.0中所包含的Sun Classic VM算起,Java虚拟机已经发展了15个年头,沧海桑田一瞬间,15年转眼而过,这期间曾经涌现、湮灭过许多或经典或优秀或有特色的虚拟机实现,在《Java虚拟机专栏》的第1篇中,我们先暂且把代码与技术放下,一起来回顾一下Java虚拟机家族的发展轨迹和历史变迁.

历史篇:Java虚拟机家族考

- Guancheng(冠诚) - FenixSoft 3.0
  声明:本文为笔者原创,但首发于InfoQ中文站,详见文末声明.   说起Java虚拟机,许多Java程序员都会潜意识地把它与Sun[注1] HotSpot虚拟机等同看待,也许还有一些程序员会注意到BEA JRockit和IBM J9,但大多数人对JVM的认识都仅限于此了.   从1996年初Sun发布的JDK 1.0中所包含的Sun Classic VM算起,Java虚拟机已经发展了15个年头,沧海桑田一瞬间,15年转眼而过,这期间曾经涌现、湮灭过许多或经典或优秀或有特色的虚拟机实现,在《Java虚拟机专栏》的第1篇中,我们先暂且把代码与技术放下,一起来回顾一下Java虚拟机家族的发展轨迹和历史变迁.