数据挖掘之R与SQL

标签: R 语言 数据挖掘 datamining Oracle sql | 发表时间:2011-08-18 01:29 | 作者:刘思喆 Wolf
出处:http://www.bjt.name

今天看到老同学@JulieJulieJulieJulie浪漫求婚,真的很浪漫、很唯美、很感动。正如评论说的,我们又相信爱情了!于是,小兴奋,睡不着,爬起来补一篇文章。

## 正文开始

最近在数据挖掘专业网站 KDnuggets 上刊出了2011年度关于数据挖掘/分析语言流行度的调查,不出意料R、SQL、Python果然排在了前三位。当然有看官说了,参与调查的样本数量太少,而且以登录KDnuggets网站的用户为主,样本的信息显然是有偏的。实话说,我也对KDnuggets网站的Poll持保留态度,但它的结果毕竟代表了某一类人群的使用偏好,尤其是在语言角度。

我们看排名前5位的语言:

  1. R:世界范围内的标准统计语言,以快速更新的算法,灵活的编程,广泛的扩展,绚丽的图形著称,遵循GPL协议的开源软件
  2. SQL:大部分企业使用的,数据仓库、集市的通用查询语言,在大型数据应用上有极大的优势,同时也是数据分析/挖掘的基础
  3. Python:传说中的Google的三大开发语言,适用于粘合一些复杂应用,我这里工作暂时没有涉及过
  4. Java:太多的应用都基于Java的,不然Oracle也不会花上74亿美元收购SUN了
  5. SAS:曾经的数据分析领域老大,当然现在市场份额依旧非常高。但SAS昂贵的使用费用迫使更多的分析工作者转到了开源领域,比如R

后四种语言同R语言还都有一些关系,闲扯起来还真是没完没了,这里就不再赘述,各位可以在搜索引擎上搜索R+XXX。如果我们将范围限制在数据挖掘这个主题,R同SQL的关系则变得非常非常紧密。

众所周知,R的强项在于灵活的算法,以及开发速度,但其所有的计算都是在内存中进行,一旦数据量达到了内存上限,基本上就是叫天天不灵,叫地地不应了。所以在使用R做数据挖掘时,就必须考虑使用其他的数据工具弥补R在这方面的劣势。尤其是在商业应用上,不能搭建R环境的条件下,SQL语言是提供挖掘结果的不二选择。

支持SQL的商用数据库比如Oracle、DB2性能优异,但对系统的占用非常厉害,假如本地装了Oracle,又开了点其他应用,2G的内存很快就会吃到1.5G甚至以上,再想用R做分析那只能用“捉襟见肘”这个词来形容了。当然如果在办公条件下有相应的服务器环境最好,在某些应用环境下,甚至可以通过本地多开R进程来达到并行计算的目的。

或者本地分析比较多,但数据量又时常上到百兆,虽然R也能够处理,但依然建议将数据移植到本地构建的轻量数据库环境,比如MySQL环境。从我的经验上看,虽然MySQL对比Oracle、DB2来说小巧很多,但在同R语言配合的本地应用上,性能更加有保证。

有了支持SQL的数据库环境,就要聊一聊R语言到底和SQL有什么关系:

  • 各大数据库厂商已经开发了相关的支持R语言的数据挖掘套件,比如Oracle的RODM,Teradata的 teradataR等。
  • R本身就可以通过扩展包来对数据库执行SQL,这时你可以把R语言作为调度环境。R的计算过程结果可以直接作为参数传递到数据库中,并将相应的结果返回,供R环境使用。
  • 通过sqldf包,在R内部使用标准SQL对数据进行预处理,包括group by,order by,join,where等操作。
  • 当然R最重要的用途是将数据挖掘的结果转义为标准SQL语言,利用数据库来实现挖掘结果。当然有人说了,不是有pmml可以将模型嵌入到数据库么?!扯!到现在我也没见pmml成为应用标准,老老实实的将模型结果转义到SQL才是王道。比如用于概率预测的Logistic回归或者分类模型的Tree-based Models,这些模型的转义工作都不难,这样最终的工程实施都脱离了R环境,更具通用性,且利用了数据库的高速性能。

说句题外话:不知道哪位看官见过70万字符长度的庞大SQL语句——是的,你没看错,70w,R转义的,可以执行,对于数据库而言不过是半分钟的事情。

相关文章:

相关 [数据挖掘 sql] 推荐:

数据挖掘之R与SQL

- Wolf - 刘思喆 @ 贝吉塔行星
今天看到老同学@JulieJulieJulieJulie 的浪漫求婚,真的很浪漫、很唯美、很感动. 正如评论说的,我们又相信爱情了. 于是,小兴奋,睡不着,爬起来补一篇文章. 最近在数据挖掘专业网站 KDnuggets 上刊出了2011年度关于数据挖掘/分析语言流行度的调查,不出意料R、SQL、Python果然排在了前三位.

SQL Server 2008 数据挖掘算法浅析

- 张大糊涂 - 标点符
数据挖掘是商务智能应用中较高层次的一项技术,而商务智能中还包括数据仓库、ETL、联机分析、商业报表等多项技术. 数据挖掘在商务智能应用中提供的是一种自动化或半自动化的数据分析手段,利用数据挖掘用户将可以更加方便地发现数据的模式(其实就是用户关心的业务模式),用户还可以利用这些模式对某些符合特征的数据作出预测.

数据挖掘是神马?

- - 互联网分析
1、数据挖掘需要‘神马样’的流程.  2、哥,有没有详细点的,来个给力的. 4、数据在统计意义上有哪些类型. 9、知道这些工具不知道如何在工作中用呀. 11、还有没有更人性化、智能化的展现. 12、上面这图看起来很给力,背后很复杂吧.  16、转载的留个来源 ,毕竟是我辛苦收集和想出来的,谢谢. 忘记“大数据”,从“中数据”开始.

这就是数据挖掘

- - 互联网分析
当今数据库的容量已经达到上万亿的水平(T)— 1,000,000,000,000个字节. 在这些大量数据的背后隐藏了很多具有决策意义的信息,那么怎么得到这些“知识”呢. 也就是怎样通过一颗颗的树木了解到整个森林的情况. 计 算机科学对这个问题给出的最新回答就是:数据挖掘,在“数据矿山”中找到蕴藏的“知识金块”,帮助企业减少不必要投资的同时提高资金回报.

关于数据挖掘

- - 牛国柱
以下内容来自网络,关于数据挖掘的一些最基本的知识. 数据挖掘是对一系列数据进行分析和挖掘的方法的统称,在精准营销领域,最常用的数据挖掘方法主要包括以下三类:分类、聚类、关联. 分类(Classify)属于预测性模型. 分类模型的构建需要“训练样本”,训练样本中的每一个个体的类别必须是明确的. 分类模型的特征变量一般称为“自变量”,又叫“预测变量”,类别变量称为“目标变量”.

数据挖掘与Taco Bell编程

- everfly - 译言-每日精品译文推荐
来源Data Mining and Taco Bell Programming. Programmer Ted Dziuba suggests an alternative to traditional program that he called "Taco Bell Programming." The Taco Bell chain creates multiple menu items from about eight different ingredients.

使用Weka进行数据挖掘

- - 搜索研发部官方博客
数据挖掘、机器学习这些字眼,在一些人看来,是门槛很高的东西. 诚然,如果做算法实现甚至算法优化,确实需要很多背景知识. 但事实是,绝大多数数据挖掘工程师,不需要去做算法层面的东西. 他们的精力,集中在特征提取,算法选择和参数调优上. 那么,一个可以方便地提供这些功能的工具,便是十分必要的了. 而weka,便是数据挖掘工具中的佼佼者.

数据挖掘 - 分类算法比较

- - IBM developerWorks 中国 : 文档库
随着计算能力、存储、网络的高速发展,人类积累的数据量正以指数速度增长. 对于这些数据,人们迫切希望从中提取出隐藏其中的有用信息,更需要发现更深层次的规律,对决策,商务应用提供更有效的支持. 为了满足这种需求,数据挖掘技术的得到了长足的发展,而分类在数据挖掘中是一项非常重要的任务,目前在商业上应用最多.

数据挖掘分类技术

- - CSDN博客云计算推荐文章
从分类问题的提出至今,已经衍生出了很多具体的分类技术. 下面主要简单介绍四种最常用的分类技术,不过因为原理和具体的算法实现及优化不是本书的重点,所以我们尽量用应用人员能够理解的语言来表述这些技术. 而且我们会在第4章再次给读者讲述分类算法和相关原理. 在我们学习这些算法之前必须要清楚一点,分类算法不会百分百准确.

数据挖掘的标准流程

- - CSDN博客推荐文章
    CRISP-DM (cross-industry standard process for data mining), 即为"跨行业数据挖掘过程标准". 此KDD过程模型于1999年欧盟机构联合起草. 通过近几年的发展,CRISP-DM 模型在各种KDD过程模型中占据领先位置,采用量达到近60%.(数据引自Cios and Kurgan于2005年合著的论文trands in data mining and knowledge discovery中 )    在1996年,当时数据挖掘市场是年轻而不成熟的,但是这个市场显示了爆炸式的增长.