Hadoop Metrics体系分析之三:构建自己的Metrics
大型分布式系统中需要metrics来了解系统状态已成为系统必需的功能之一。其实测试系统甚至测试用例中也同样需要metrics。通过这些指标我们可以了解测试的进度、状况、以及一些过程情况,比如性能指标和一些无法用是否判断数据。下面我们就用一个简单的例子来看看如何使用hadoop metrics。
创建Updater
Updater是一个拥有doUpdates方法的接口,将实现了这个接口的类注册到MetricsContext中,context就能周期性的调用doUpdates来收集metrics。因此实现Updater是metrics框架应用中最重要的事情。下面是一个简单的Updater:
|
创建配置文件
配置文件的名称通常为hadoop-metrics.properties,需要放置在classpath中:
test-client.class=org.apache.hadoop.metrics.ganglia.GangliaContext31
test-client.period=15
test-client.servers= hostname:8649
通过以上的操作,配合ganglia,metrics模块就可以运行起来了,这也是最常用的方式,但是也存在着很多不方便的地方。下面就分享下我们metrics应用的一些经验。
数据收集完成之后
Hadoop metrics框架以及Ganglia很好的完成了数据的采集和集群规模的收集工作。但是也有很多让我们不爽的地方:
1、 ganglia仅能按照1小时、1天、1周、1年来浏览数据,显然无法做进一步的分析处理。为了满足我们随意时间查询以及多重数据整合分析的需求,必须将数据从ganglia中取出来另外存储为更加灵活的数据结构。经过同事的一些实践发现最靠谱的就是文件存储。于是就有了以下流程:hadoop metrics采集–>ganglia收集汇总–>自定义程序转存为固定格式文件–>web查询分析界面及程序。这个方案充分利用了文件的快速检索和顺序读优势,而且每个指标一个文件也方便迁移和管理。
2、 如果一个集群的指标太多、实时性要求越来越高、分析要求越来越复杂,那我们就不得不放弃ganglia。通过扩展MetricsContext可以实现自己的数据发送算法,将集群数据发送到数据处理中心,通过更加有针对性的数据处理方案来分析海量指标数据。
通过上面的介绍我想大家已经掌握了metrics体系的构建思路,不一定非要使用hadoop的metrics框架我们也完全有能力创造出更适合自己的metrics解决方案。