合理使用MySQL索引建立高质量查询语句

标签: 合理使用 mysql 索引 | 发表时间:2012-01-18 16:33 | 作者:PainsOnline
出处:http://blog.csdn.net
 

  MySQL的优化主要分为结构优化(Scheme optimization)和查询优化(Query optimization)。本章讨论的高性能索引策略主要属于结构优化范畴。本章的内容完全基于上文的理论基础,实际上一旦理解了索引背后的机制,那么选择高性能的策略就变成了纯粹的推理,并且可以理解这些策略背后的逻辑。

  示例数据库

  为了讨论索引策略,需要一个数据量不算小的数据库作为示例。本文选用MySQL官方文档中提供的示例数据库之一:employees。这个数据库关系复杂度适中,且数据量较大。下图是这个数据库的E-R关系图(引用自MySQL官方手册):

  

\

 

  图12

  MySQL官方文档中关于此数据库的页面为http://dev.mysql.com/doc/employee/en/employee.html。里面详细介绍了此数据库,并提供了下载地址和导入方法,如果有兴趣导入此数据库到自己的MySQL可以参考文中内容。

  最左前缀原理与相关优化

  高效使用索引的首要条件是知道什么样的查询会使用到索引,这个问题和B+Tree中的“最左前缀原理”有关,下面通过例子说明最左前缀原理。

  这里先说一下联合索引的概念。在上文中,我们都是假设索引只引用了单个的列,实际上,MySQL中的索引可以以一定顺序引用多个列,这种索引叫做联合索引,一般的,一个联合索引是一个有序元组,其中各个元素均为数据表的一列,实际上要严格定义索引需要用到关系代数,但是这里我不想讨论太多关系代数的话题,因为那样会显得很枯燥,所以这里就不再做严格定义。另外,单列索引可以看成联合索引元素数为1的特例。

  以employees.titles表为例,下面先查看其上都有哪些索引:

SHOW INDEX FROM employees.titles;
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
| Table  | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Null | Index_type |
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
| titles |          0 | PRIMARY  |            1 | emp_no      | A         |        NULL |      | BTREE      |
| titles |          0 | PRIMARY  |            2 | title       | A         |        NULL |      | BTREE      |
| titles |          0 | PRIMARY  |            3 | from_date   | A         |      443308 |      | BTREE      |
| titles |          1 | emp_no   |            1 | emp_no      | A         |      443308 |      | BTREE      |
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+

 

  从结果中可以到titles表的主索引为,还有一个辅助索引。为了避免多个索引使事情变复杂(MySQL的SQL优化器在多索引时行为比较复杂),这里我们将辅助索引drop掉:

  ALTER TABLE employees.titles DROP INDEX emp_no;

  这样就可以专心分析索引PRIMARY的行为了。

 

  情况一:全列匹配。

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title='Senior Engineer' AND from_date='1986-06-26';
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| id | select_type | table  | type  | possible_keys | key     | key_len | ref               | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
|  1 | SIMPLE      | titles | const | PRIMARY       | PRIMARY | 59      | const,const,const |    1 |       |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+

 

  很明显,当按照索引中所有列进行精确匹配(这里精确匹配指“=”或“IN”匹配)时,索引可以被用到。这里有一点需要注意,理论上索引对顺序是敏感的,但 是由于MySQL的查询优化器会自动调整where子句的条件顺序以使用适合的索引,例如我们将where中的条件顺序颠倒:

EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26' AND emp_no='10001' AND title='Senior Engineer';
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| id | select_type | table  | type  | possible_keys | key     | key_len | ref               | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
|  1 | SIMPLE      | titles | const | PRIMARY       | PRIMARY | 59      | const,const,const |    1 |       |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+

 

  效果是一样的。

  情况二:最左前缀匹配。

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+
| id | select_type | table  | type | possible_keys | key     | key_len | ref   | rows | Extra |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+
|  1 | SIMPLE      | titles | ref  | PRIMARY       | PRIMARY | 4       | const |    1 |       |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+

 

  当查询条件精确匹配索引的左边连续一个或几个列时,如或,所以可以被用到,但是只能用到一部分,即条件所组成的最左前缀。上面的查询从分析结果看用到了PRIMARY索引,但是 key_len为4,说明只用到了索引的第一列前缀。

  情况三:查询条件用到了索引中列的精确匹配,但是中间某个条件未提供。

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND from_date='1986-06-26';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| id | select_type | table  | type | possible_keys | key     | key_len | ref   | rows | Extra       |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
|  1 | SIMPLE      | titles | ref  | PRIMARY       | PRIMARY | 4       | const |    1 | Using where |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+

 

  此时索引使用情况和情况二相同,因为title未提供,所以查询只用到了索引的第一列,而后面的from_date虽然也在索引中,但是由于 title不存在而无法和左前缀连接,因此需要对结果进行扫描过滤from_date(这里由于emp_no唯一,所以不存在扫描)。如果想让 from_date也使用索引而不是where过滤,可以增加一个辅助索引,此时上面的查询会使用这个索引。除此之外,还可以使用一种称之为“隔离列”的优化方法,将emp_no与from_date 之间的“坑”填上。

  首先我们看下title一共有几种不同的值:

SELECT DISTINCT(title) FROM employees.titles;
+--------------------+
| title              |
+--------------------+
| Senior Engineer    |
| Staff              |
| Engineer           |
| Senior Staff       |
| Assistant Engineer |
| Technique Leader   |
| Manager            |
+--------------------+

 

  只有7种。在这种成为“坑”的列值比较少的情况下,可以考虑用“IN”来填补这个“坑”从而形成最左前缀:

EXPLAIN SELECT * FROM employees.titles
WHERE emp_no='10001'
AND title IN ('Senior Engineer', 'Staff', 'Engineer', 'Senior Staff', 'Assistant Engineer', 'Technique Leader', 'Manager')
AND from_date='1986-06-26';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table  | type  | possible_keys | key     | key_len | ref  | rows | Extra       |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
|  1 | SIMPLE      | titles | range | PRIMARY       | PRIMARY | 59      | NULL |    7 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

 

  这次key_len为59,说明索引被用全了,但是从type和rows看出IN实际上执行了一个range查询,这里检查了7个key。看下两种查询的性能比较:

SHOW PROFILES;
+----------+------------+-------------------------------------------------------------------------------+
| Query_ID | Duration   | Query                                                                         |
+----------+------------+-------------------------------------------------------------------------------+
|       10 | 0.00058000 | SELECT * FROM employees.titles WHERE emp_no='10001' AND from_date='1986-06-26'|
|       11 | 0.00052500 | SELECT * FROM employees.titles WHERE emp_no='10001' AND title IN ...          |
+----------+------------+-------------------------------------------------------------------------------+

 

  “填坑”后性能提升了一点。如果经过emp_no筛选后余下很多数据,则后者性能优势会更加明显。当然,如果title的值很多,用填坑就不合适了,必须建立辅助索引。

  情况四:查询条件没有指定索引第一列。

EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26';                  
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table  | type | possible_keys | key  | key_len | ref  | rows   | Extra       |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
|  1 | SIMPLE      | titles | ALL  | NULL          | NULL | NULL    | NULL | 443308 | Using where |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+

 

  由于不是最左前缀,索引这样的查询显然用不到索引。

  情况五:匹配某列的前缀字符串。

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title LIKE 'Senior%';
view sourceprint?
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table  | type  | possible_keys | key     | key_len | ref  | rows | Extra       |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
|  1 | SIMPLE      | titles | range | PRIMARY       | PRIMARY | 56      | NULL |    1 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

 

  此时可以用到索引,但是如果通配符不是只出现在末尾,则无法使用索引。

  情况六:范围查询。

EXPLAIN SELECT * FROM employees.titles WHERE emp_no<'10010' and title='Senior Engineer';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table  | type  | possible_keys | key     | key_len | ref  | rows | Extra       |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
|  1 | SIMPLE      | titles | range | PRIMARY       | PRIMARY | 4       | NULL |   16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

 

  范围列可以用到索引(必须是最左前缀),但是范围列后面的列无法用到索引。同时,索引最多用于一个范围列,因此如果查询条件中有两个范围列则无法全用到索引。

EXPLAIN SELECT * FROM employees.titles
WHERE emp_no<'10010'
AND title='Senior Engineer'
AND from_date BETWEEN '1986-01-01' AND '1986-12-31';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table  | type  | possible_keys | key     | key_len | ref  | rows | Extra       |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
|  1 | SIMPLE      | titles | range | PRIMARY       | PRIMARY | 4       | NULL |   16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

 

  可以看到索引对第二个范围索引无能为力。这里特别要说明MySQL一个有意思的地方,那就是仅用explain可能无法区分范围索引和多值匹配,因为在type中这两者都显示为range。同时,用了“between”并不意味着就是范围查询,例如下面的查询:

EXPLAIN SELECT * FROM employees.titles
WHERE emp_no BETWEEN '10001' AND '10010'
AND title='Senior Engineer'
AND from_date BETWEEN '1986-01-01' AND '1986-12-31';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table  | type  | possible_keys | key     | key_len | ref  | rows | Extra       |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
|  1 | SIMPLE      | titles | range | PRIMARY       | PRIMARY | 59      | NULL |   16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

 

  看起来是用了两个范围查询,但作用于emp_no上的“BETWEEN”实际上相当于“IN”,也就是说emp_no实际是多值精确匹配。可以看到这个查询用到了索引全部三个列。因此在MySQL中要谨慎地区分多值匹配和范围匹配,否则会对MySQL的行为产生困惑。

  情况七:查询条件中含有函数或表达式。

  很不幸,如果查询条件中含有函数或表达式,则MySQL不会为这列使用索引(虽然某些在数学意义上可以使用)。例如:

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND left(title, 6)='Senior';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| id | select_type | table  | type | possible_keys | key     | key_len | ref   | rows | Extra       |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
|  1 | SIMPLE      | titles | ref  | PRIMARY       | PRIMARY | 4       | const |    1 | Using where |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+

 

  虽然这个查询和情况五中功能相同,但是由于使用了函数left,则无法为title列应用索引,而情况五中用LIKE则可以。再如:

EXPLAIN SELECT * FROM employees.titles WHERE emp_no - 1='10000';                       
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table  | type | possible_keys | key  | key_len | ref  | rows   | Extra       |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
|  1 | SIMPLE      | titles | ALL  | NULL          | NULL | NULL    | NULL | 443308 | Using where |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+

 

  显然这个查询等价于查询emp_no为10001的函数,但是由于查询条件是一个表达式,MySQL无法为其使用索引。看来MySQL还没有智能到自动优化常量表达式的程度,因此在写查询语句时尽量避免表达式出现在查询中,而是先手工私下代数运算,转换为无表达式的查询语句。

 

  索引选择性与前缀索引

  既然索引可以加快查询速度,那么是不是只要是查询语句需要,就建上索引?答案是否定的。因为索引虽然加快了查询速度,但索引也是有代价的:索引文件本身要消耗存储空间,同时索引会加重插入、删除和修改记录时的负担,另外,MySQL在运行时也要消耗资源维护索引,因此索引并不是越多越好。一般两种情况下不建议建索引。

  第一种情况是表记录比较少,例如一两千条甚至只有几百条记录的表,没必要建索引,让查询做全表扫描就好了。至于多少条记录才算多,这个个人有个人的看法,我个人的经验是以2000作为分界线,记录数不超过 2000可以考虑不建索引,超过2000条可以酌情考虑索引。

  另一种不建议建索引的情况是索引的选择性较低。所谓索引的选择性(Selectivity),是指不重复的索引值(也叫基数,Cardinality)与表记录数(#T)的比值:

  Index Selectivity = Cardinality / #T

  显然选择性的取值范围为(0, 1],选择性越高的索引价值越大,这是由B+Tree的性质决定的。例如,上文用到的employees.titles表,如果title字段经常被单独查询,是否需要建索引,我们看一下它的选择性:

SELECT count(DISTINCT(title))/count(*) AS Selectivity FROM employees.titles;
+-------------+
| Selectivity |
+-------------+
|      0.0000 |
+-------------+

 

  title的选择性不足0.0001(精确值为0.00001579),所以实在没有什么必要为其单独建索引。

  有一种与索引选择性有关的索引优化策略叫做前缀索引,就是用列的前缀代替整个列作为索引key,当前缀长度合适时,可以做到既使得前缀索引的选择性 接近全列索引,同时因为索引key变短而减少了索引文件的大小和维护开销。下面以employees.employees表为例介绍前缀索引的选择和使 用。

  从图12可以看到employees表只有一个索引,那么如果我们想按名字搜索一个人,就只能全表扫描了:

EXPLAIN SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido';                
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table     | type | possible_keys | key  | key_len | ref  | rows   | Extra       |
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+
|  1 | SIMPLE      | employees | ALL  | NULL          | NULL | NULL    | NULL | 300024 | Using where |
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+

 

  如果频繁按名字搜索员工,这样显然效率很低,因此我们可以考虑建索引。有两种选择,建或,看下两个索引的选择性:

SELECT count(DISTINCT(first_name))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
|      0.0042 |
+-------------+
 
SELECT count(DISTINCT(concat(first_name, last_name)))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
|      0.9313 |
+-------------+

    <first_name>显然选择性太低,<first_name, last_name>选择性很好,但是first_name和last_name加起来长度为30,有没有兼顾长度和选择性的办法?可以考虑用 first_name和last_name的前几个字符建立索引,例如<first_name, left(last_name, 3)>,看看其选择性:

SELECT count(DISTINCT(concat(first_name, left(last_name, 3))))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
|      0.7879 |
+-------------+

 

  选择性还不错,但离0.9313还是有点距离,那么把last_name前缀加到4:

SELECT count(DISTINCT(concat(first_name, left(last_name, 4))))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
|      0.9007 |
+-------------+

 

  这时选择性已经很理想了,而这个索引的长度只有18,比短了接近一半,我们把这个前缀索引<first_name, last_name>建上:

ALTER TABLE employees.employees
ADD INDEX `first_name_last_name4` (first_name, last_name(4));

 

  此时再执行一遍按名字查询,比较分析一下与建索引前的结果:

SHOW PROFILES;
+----------+------------+---------------------------------------------------------------------------------+
| Query_ID | Duration   | Query                                                                           |
+----------+------------+---------------------------------------------------------------------------------+
|       87 | 0.11941700 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' |
|       90 | 0.00092400 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' |
+----------+------------+---------------------------------------------------------------------------------+

 

  性能的提升是显著的,查询速度提高了120多倍。

  前缀索引兼顾索引大小和查询速度,但是其缺点是不能用于ORDER BY和GROUP BY操作,也不能用于Covering index(即当索引本身包含查询所需全部数据时,不再访问数据文件本身)。

  InnoDB的主键选择与插入优化

  在使用InnoDB存储引擎时,如果没有特别的需要,请永远使用一个与业务无关的自增字段作为主键。

  经常看到有帖子或博客讨论主键选择问题,有人建议使用业务无关的自增主键,有人觉得没有必要,完全可以使用如学号或身份证号这种唯一字段作为主键。不论支持哪种论点,大多数论据都是业务层面的。如果从数据库索引优化角度看,使用InnoDB引擎而不使用自增主键绝对是一个糟糕的主意。

  上文讨论过InnoDB的索引实现,InnoDB使用聚集索引,数据记录本身被存于主索引(一颗B+Tree)的叶子节点上。这就要求同一个叶子节点内(大小为一个内存页或磁盘页)的各条数据记录按主键顺序存放,因此每当有一条新的记录插入时,MySQL会根据其主键将其插入适当的节点和位置,如果页面达到装载因子(InnoDB默认为15/16),则开辟一个新的页(节点)。

  如果表使用自增主键,那么每次插入新的记录,记录就会顺序添加到当前索引节点的后续位置,当一页写满,就会自动开辟一个新的页。如下图所示:

  

\

 

  图13

  这样就会形成一个紧凑的索引结构,近似顺序填满。由于每次插入时也不需要移动已有数据,因此效率很高,也不会增加很多开销在维护索引上。

  如果使用非自增主键(如果身份证号或学号等),由于每次插入主键的值近似于随机,因此每次新纪录都要被插到现有索引页得中间某个位置:

  

\

 

  图14

  此时MySQL不得不为了将新记录插到合适位置而移动数据,甚至目标页面可能已经被回写到磁盘上而从缓存中清掉,此时又要从磁盘上读回来,这增加了很多开销,同时频繁的移动、分页操作造成了大量的碎片,得到了不够紧凑的索引结构,后续不得不通过OPTIMIZE TABLE来重建表并优化填充页面。

  因此,只要可以,请尽量在InnoDB上采用自增字段做主键。

作者:PainsOnline 发表于2012-1-18 16:33:10 原文链接
阅读:3 评论:0 查看评论

相关 [合理使用 mysql 索引] 推荐:

合理使用MySQL索引建立高质量查询语句

- - CSDN博客推荐文章
    MySQL的优化主要分为结构优化(Scheme optimization)和查询优化(Query optimization). 本章讨论的高性能索引策略主要属于结构优化范畴. 本章的内容完全基于上文的理论基础,实际上一旦理解了索引背后的机制,那么选择高性能的策略就变成了纯粹的推理,并且可以理解这些策略背后的逻辑.

ElasticSearch 索引 VS MySQL 索引

- - crossoverJie's Blog
这段时间在维护产品的搜索功能,每次在管理台看到 elasticsearch 这么高效的查询效率我都很好奇他是如何做到的. 这甚至比在我本地使用 MySQL 通过主键的查询速度还快. 这类问题网上很多答案,大概意思呢如下:. Lucene 的全文检索引擎,它会对数据进行分词后保存索引,擅长管理大量的索引数据,相对于.

[MySQL] B+树索引

- - CSDN博客推荐文章
B+树是一种经典的数据结构,由平衡树和二叉查找树结合产生,它是为磁盘或其它直接存取辅助设备而设计的一种平衡查找树,在B+树中,所有的记录节点都是按键值大小顺序存放在同一层的叶节点中,叶节点间用指针相连,构成双向循环链表,非叶节点(根节点、枝节点)只存放键值,不存放实际数据. 保持树平衡主要是为了提高查询性能,但为了维护树的平衡,成本也是巨大的,当有数据插入或删除时,需采用拆分节点、左旋、右旋等方法.

mysql 索引技巧

- - 小彰
MySQL索引的建立对于MySQL的高效运行是很重要的. 下面介绍几种常见的MySQL索引类型. 在数据库表中,对字段建立索引可以大大提高查询速度. 假如我们创建了一个 mytable表:. CREATE TABLE mytable(   ID INT NOT NULL,    username VARCHAR(16) NOT NULL  );   我们随机向里面插入了10000条记录,其中有一条:5555, admin.

mysql选择索引

- - CSDN博客数据库推荐文章
1、尽量为用来搜索、分类或分组的数据列编制索引,不要为作为输出显示的数据列编制索引. 最适合有索引的数据列是那些在where子句中数据列,在联结子句中出现的数据列,或者是在Group by 、Order by子句中出现的数据列. select 后的数据列最好不要用索引. 2、综合考虑各数据列的维度.

mysql 索引详解

- - 行业应用 - ITeye博客
本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题. 特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等. 为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论.

mysql索引认识

- - 数据库 - ITeye博客
数据在磁盘中是以 “块”的形式存储的,所以一张表涉及的数据可能会存在多个块中,而在磁盘中查询数据则会根据字段是否为有序与无序来区分,. 无序情况:1.数值具有唯一性则需要查找 总块数/2.                   2.无序+无唯一性则需要查找  总块数. 有序情况:1.数值唯一性:log2(总块数/2)   (log2是二分查找算法).

MySQL 索引方式

- - zzm
本文配图来自《高性能MySQL(第二版)》. 在数据库中,对性能影响最大的几个策略包括数据库的锁策略、缓存策略、索引策略、存储策略、执行计划优化策略. 索引策略决定数据库快速定位数据的效率,存储策略决定数据持久化的效率. MySQL中两大主要存储引擎MyISAM和InnoDB采用了不同的索引和存储策略,本文将分析它们的异同和性能.

MySql索引总结

- - 掘金后端
MySQL 索引底层数据结构.   Mysql索引使用的数据结构主要有 BTree索引 和 Hash索引. 对于Hash索引来说,底层数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,使用Hash索引查询性能最快. 其余大多数场景建议使用BTree索引. 为什么索引能够提高查询速度.

Mysql-innodb-B+索引

- - 掘金后端
这是读书笔记,Mysql,innodb系列一共3篇. Mysql-innodb-B+索引(本篇). Mysql-innodb-锁(预计20200523). Mysql-innodb-事务预计20200530). CREATE TABLE `aid_***_detail` ( //省略所有字段 PRIMARY KEY (`id`), KEY `range_idx` (`range_id`,`is_delete`,`range_detail_num`,`goods_id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4复制代码.