HBase 系统架构

标签: hbase 系统架构 | 发表时间:2012-06-04 01:01 | 作者:石头儿
出处:http://www.cnblogs.com/

HBase是Apache Hadoop的数据库,能够对大型数据提供随机、实时的读写访问。HBase的目标是存储并处理大型的数据。HBase是一个开源的,分布式的,多版本的,面向列的存储模型。它存储的是松散型数据。

HBase特性:

1 高可靠性

2 高效性

3 面向列

4 可伸缩

5 可在廉价PC Server搭建大规模结构化存储集群

HBase是Google BigTable的开源实现,其相互对应如下:

Google HBase
文件存储系统   GFS   HDFS
海量数据处理   MapReduceHadoop MapReduce
协同服务管理ChubbyZookeeper

 

HBase关系图:

HBase位于结构化存储层,围绕HBase,各部件对HBase的支持情况:
Hadoop部件作用
HDFS高可靠的底层存储支持
MapReduce 高性能的计算能力
Zookeeper 稳定服务和failover机制
Pig&Hive 高层语言支持,便于数据统计
Sqoop  提供RDBMS数据导入,便于传统数据库向HBase迁移

访问HBase的接口

方式特点场合
Native Java API最常规和高效Hadoop MapReduce Job并行处理HBase表数据
HBase Shell   最简单接口  HBase管理使用
Thrift Gateway利用Thrift序列化支持多种语言  异构系统在线访问HBase表数据
Rest Gateway 解除语言限制Rest风格Http API访问
PigPig Latin六十编程语言处理数据数据统计
Hive  简单,SqlLike

HBase 数据模型

组成部件说明:

Row Key: Table主键 行键 Table中记录按照Row Key排序
Timestamp:   每次对数据操作对应的时间戳,也即数据的version number
Column Family:  列簇,一个table在水平方向有一个或者多个列簇,列簇可由任意多个Column组成,列簇支持动态扩展,无须预定义数量及类型,二进制存储,用户需自行进行类型转换

Table&Region

1. Table随着记录增多不断变大,会自动分裂成多份Splits,成为Regions
2. 一个region由[startkey,endkey)表示
3. 不同region会被Master分配给相应的RegionServer进行管理

两张特殊表:-ROOT- & .META.

.META. 记录用户表的Region信息,同时,.META.也可以有多个region
-ROOT-   记录.META.表的Region信息,但是,-ROOT-只有一个region
Zookeeper中记录了-ROOT-表的location
客户端访问数据的流程:
Client -> Zookeeper -> -ROOT- -> .META. -> 用户数据表
多次网络操作,不过client端有cache缓存

HBase 系统架构图

组成部件说明
Client:
使用HBase RPC机制与HMaster和HRegionServer进行通信
Client与HMaster进行通信进行管理类操作
Client与HRegionServer进行数据读写类操作

Zookeeper:
Zookeeper Quorum存储-ROOT-表地址、HMaster地址
HRegionServer把自己以Ephedral方式注册到Zookeeper中,HMaster随时感知各个HRegionServer的健康状况
Zookeeper避免HMaster单点问题

HMaster:
HMaster没有单点问题,HBase中可以启动多个HMaster,通过Zookeeper的Master Election机制保证总有一个Master在运行
主要负责Table和Region的管理工作:
1 管理用户对表的增删改查操作
2 管理HRegionServer的负载均衡,调整Region分布
3 Region Split后,负责新Region的分布
4 在HRegionServer停机后,负责失效HRegionServer上Region迁移

HRegionServer:
HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据


HRegionServer管理一些列HRegion对象;
每个HRegion对应Table中一个Region,HRegion由多个HStore组成;
每个HStore对应Table中一个Column Family的存储;
Column Family就是一个集中的存储单元,故将具有相同IO特性的Column放在一个Column Family会更高效

HStore:
HBase存储的核心。由MemStore和StoreFile组成。
MemStore是Sorted Memory Buffer。用户写入数据的流程:


Client写入 -> 存入MemStore,一直到MemStore满 -> Flush成一个StoreFile,直至增长到一定阈值 -> 出发Compact合并操作 -> 多个StoreFile合并成一个StoreFile,同时进行版本合并和数据删除 -> 当StoreFiles Compact后,逐步形成越来越大的StoreFile -> 单个StoreFile大小超过一定阈值后,触发Split操作,把当前Region Split成2个Region,Region会下线,新Split出的2个孩子Region会被HMaster分配到相应的HRegionServer上,使得原先1个Region的压力得以分流到2个Region上
由此过程可知,HBase只是增加数据,有所得更新和删除操作,都是在Compact阶段做的,所以,用户写操作只需要进入到内存即可立即返回,从而保证I/O高性能。

HLog
引入HLog原因:
在分布式系统环境中,无法避免系统出错或者宕机,一旦HRegionServer以外退出,MemStore中的内存数据就会丢失,引入HLog就是防止这种情况
工作机制:
每个HRegionServer中都会有一个HLog对象,HLog是一个实现Write Ahead Log的类,每次用户操作写入Memstore的同时,也会写一份数据到HLog文件,HLog文件定期会滚动出新,并删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知,HMaster首先处理遗留的HLog文件,将不同region的log数据拆分,分别放到相应region目录下,然后再将失效的region重新分配,领取到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复。

HBase存储格式
HBase中的所有数据文件都存储在Hadoop HDFS文件系统上,格式主要有两种:
1 HFile HBase中KeyValue数据的存储格式,HFile是Hadoop的二进制格式文件,实际上StoreFile就是对HFile做了轻量级包装,即StoreFile底层就是HFile
2 HLog File,HBase中WAL(Write Ahead Log) 的存储格式,物理上是Hadoop的Sequence File

HFile


图片解释:
HFile文件不定长,长度固定的块只有两个:Trailer和FileInfo
Trailer中指针指向其他数据块的起始点
File Info中记录了文件的一些Meta信息,例如:AVG_KEY_LEN, AVG_VALUE_LEN, LAST_KEY, COMPARATOR, MAX_SEQ_ID_KEY等
Data Index和Meta Index块记录了每个Data块和Meta块的起始点
Data Block是HBase I/O的基本单元,为了提高效率,HRegionServer中有基于LRU的Block Cache机制
每个Data块的大小可以在创建一个Table的时候通过参数指定,大号的Block有利于顺序Scan,小号Block利于随机查询
每个Data块除了开头的Magic以外就是一个个KeyValue对拼接而成, Magic内容就是一些随机数字,目的是防止数据损坏

HFile里面的每个KeyValue对就是一个简单的byte数组。这个byte数组里面包含了很多项,并且有固定的结构。


KeyLength和ValueLength:两个固定的长度,分别代表Key和Value的长度
Key部分:Row Length是固定长度的数值,表示RowKey的长度,Row 就是RowKey
Column Family Length是固定长度的数值,表示Family的长度
接着就是Column Family,再接着是Qualifier,然后是两个固定长度的数值,表示Time Stamp和Key Type(Put/Delete)
Value部分没有这么复杂的结构,就是纯粹的二进制数据

HLog File


HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和region名字外,同时还包括 sequence number和timestamp,timestamp是“写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。
HLog Sequece File的Value是HBase的KeyValue对象,即对应HFile中的KeyValue

 

 

 

 

 

 

 

 

 

 

 

本文链接

相关 [hbase 系统架构] 推荐:

HBase 系统架构

- - 博客园_首页
HBase是Apache Hadoop的数据库,能够对大型数据提供随机、实时的读写访问. HBase的目标是存储并处理大型的数据. HBase是一个开源的,分布式的,多版本的,面向列的存储模型. 5 可在廉价PC Server搭建大规模结构化存储集群. HBase是Google BigTable的开源实现,其相互对应如下:.

Facebook 的系统架构

- Ivan - 博客园新闻频道
  来源:http://www.quora.com/What-is-Facebooks-architecture (由Micha?l Figuière回答).   根据我现有的阅读和谈话,我所理解的今天Facebook的架构如下:. Web 前端是由 PHP 写的. Facebook 的 HipHop [1] 会把PHP转成 C++并用 g++编译,这样就可以为模板和Web逻贺业务层提供高的性能.

Digg.com 的系统架构

- - 标点符
在过去的几年间,我们一直致力于重构Digg的架构,现在我们称之为“Digg V4”.本文我们将全面介绍Digg的使用的系统和技术. 首先,我们来看下Digg给大众用户提供的服务吧:. 人们通过浏览器或者其他应用来访问这些Digg服务. 一些有Digg账户的用户,可以得到“我的新闻”. 每位用户可以得到的我们称之为“热门新闻”.

系统架构师JD

- - CSDN博客架构设计推荐文章
国内大型的物流企业,专业从事国内公路运输和航空运输代理. Foss项目的架构设计,包括需求分析,模块设计,系统结构设计,关键功能的开发,技术难题的解决,对团队质量输出的把控等等. 1、熟悉WebLogic/Websphere/JBoss等一个以上大型应用服务器,熟悉Linux及应用服务器集群. 2、 具有丰富J2EE架构设计经验,具有大型基于J2EE体系结构的项目规划、系统架构设计、开发经验.

Android 系统架构分析

- - CSDN博客移动开发推荐文章
Android:开源的 Linux + Google 的封闭软件 + 私有的基带 + 运营商锁定 = 开放的 Android 手机. iPhone:开源的 BSD + 苹果的闭源软件 + 私有的基带 + 运营商锁定 = 封闭的苹果 iPhone. 一个平庸的应用商店,开发者依靠广告赚钱,商店并非独此一家,用户找不到好软件.

twitter系统架构分析

- - 企业架构 - ITeye博客
twitter系统架构分析. (一)twitter的核心业务. twitter的核心业务,在于following和be followed:. (1)following-关注. 进入个人主页,会看到你follow的人发表的留言(不超过140个字),这是following的过程;. (2)followed-被关注.

支付宝系统架构

- - 编程语言 - ITeye博客
支付宝的开源分布式消息中间件–Metamorphosis(MetaQ). Metamorphosis (MetaQ) 是一个高性能、高可用、可扩展的分布式消息中间件,类似于LinkedIn的Kafka,具有消息存储顺序写、吞吐量大和支持本地和XA事务等特性,适用 于大吞吐量、顺序消息、广播和日志数据传输等场景,在淘宝和支付宝有着广泛的应用,现已开源.

hbase介绍

- AreYouOK? - 淘宝数据平台与产品部官方博客 tbdata.org
hbase是bigtable的开源山寨版本. 是建立的hdfs之上,提供高可靠性、高性能、列存储、可伸缩、实时读写的数据库系统. 它介于nosql和RDBMS之间,仅能通过主键(row key)和主键的range来检索数据,仅支持单行事务(可通过hive支持来实现多表join等复杂操作). 主要用来存储非结构化和半结构化的松散数据.

Riak对比HBase

- - NoSQLFan
文章来自 Riak官方wiki,是一篇Riak与HBase的对比文章. Riak官方的对比通常都做得很中肯,并不刻意偏向自家产品. 对比的Riak版本是1.1.x,HBase是0.94.x. Riak 与 HBase 都是基于 Apache 2.0 licensed 发布. Riak 的实现是基于 Amazon 的 Dynamo 论文,HBase 是基于 Google 的 BigTable.