[转载]基于贝叶斯算法的文本分类算法

标签: 算法 文本 分类 | 发表时间:2012-10-11 22:48 | 作者:小蚊子
出处:http://blog.sina.com.cn/xiaowenzi22
    因为要做一个关于数据挖掘的算法应用PPT,虽然知道很多数据挖掘的算法怎么使用,但是需要讲解它们的原理,还真的需要耗费很多精力,之前做一个曲线拟合,已经发在博客里,现在做贝叶斯算法的基础原理。

1、基本定义:

分类是把一个事物分到某个类别中。一个事物具有很多属性,把它的众多属性看作一个向量,即x=(x1,x2,x3,…,xn),用x这个向量来代表这个事物,x的集合记为X,称为属性集。类别也有很多种,用集合C={c1,c2,…cm}表示 。一般X和C的关系是不确定的,可以将X和C看作是随机变量,P(C|X)称为C的后验概率,与之相对的,P(C)称为C的先验概率。

根据贝叶斯公式,后验概率P(C|X)=P(X|C)P(C)/P(X),但在比较不同C值的后验概率时,分母P(X)总是常数,忽略掉,后验概率P(C|X)=P(X|C)P(C),先验概率P(C)可以通过计算训练集中属于每一个类的训练样本所占的比例,容易估计,对类条件概率P(X|C)的估计,这里我只说朴素贝叶斯分类器方法,因为 朴素贝叶斯假设事物属性之间相互条件独立, P(X|C)= ∏P(xi|ci)

2、文本分类过程

例如文档:Good good study Day day up可以用一个文本特征向量来表示,x=(Good, good, study, Day, day , up)。

在文本分类中,假设我们有一个文档d∈X,类别c又称为标签。我们把一堆打了标签的文档集合作为训练样本,∈X×C。例如:={Beijing joins the World Trade Organization, China}对于这个只有一句话的文档,我们把它归类到 China,即打上china标签。

朴素贝叶斯分类器是一种有监督学习,常见有两种模型,多项式模型(Multinomial Model)即为词频型和伯努利模型(Bernoulli Model)即文档型。二者的计算粒度不一样,多项式模型以单词为粒度,伯努利模型以文件为粒度,因此二者的先验概率和类条件概率的计算方法都不同。

计算后验概率时,对于一个文档d,多项式模型中,只有在d中出现过的单词,才会参与后验概率计算,伯努利模型中,没有在d中出现,但是在全局单词表中出现的单词,也会参与计算,不过是作为“反方”参与的。这里暂不考虑特征抽取、为避免消除测试文档时类条件概率中有为0现象而做的取对数等问题。

2.1多项式模型

1)基本原理

在多项式模型中, 设某文档d=(t1,t2,…,tk),tk是该文档中出现过的单词,允许重复,则

先验概率P(c)= 类c下单词总数/整个训练样本的单词总数

类条件概率P(tk|c)=(类c下单词tk在各个文档中出现过的次数之和+1)/(类c下单词总数+|V|)

V是训练样本的单词表(即抽取单词,单词出现多次,只算一个),|V|则表示训练样本包含多少种单词。 P(tk|c)可以看作是单词tk在证明d属于类c上提供了多大的证据,而P(c)则可以认为是类别c在整体上占多大比例(有多大可能性)。

2)举例

给定一组分好类的文本训练数据,如下:

docId

doc

类别

In c=China?

1

Chinese Beijing Chinese

yes

2

Chinese Chinese Shanghai

yes

3

Chinese Macao

yes

4

Tokyo Japan Chinese

no

给定一个新样本Chinese Chinese Chinese Tokyo Japan,对其进行分类。该文本用属性向量表示为d=(Chinese, Chinese, Chinese, Tokyo, Japan),类别集合为Y={yes, no}。

类yes下总共有8个单词,类no下总共有3个单词,训练样本单词总数为11,因此P(yes)=8/11, P(no)=3/11。类条件概率计算如下:

P(Chinese | yes)=(5+1)/(8+6)=6/14=3/7

P(Japan | yes)=P(Tokyo | yes)= (0+1)/(8+6)=1/14

P(Chinese|no)=(1+1)/(3+6)=2/9

P(Japan|no)=P(Tokyo| no) =(1+1)/(3+6)=2/9

分母中的8,是指yes类别下textc的长度,也即训练样本的单词总数,6是指训练样本有Chinese,Beijing,Shanghai, Macao, Tokyo, Japan 共6个单词,3是指no类下共有3个单词。

有了以上类条件概率,开始计算后验概率:

P(yes | d)=(3/7) 3×1/14×1/14×8/11=108/184877≈0.00058417

P(no | d)= (2/9) 3×2/9×2/9×3/11=32/216513≈0.00014780

比较大小,即可知道这个文档属于类别china。

2.2伯努利模型

1)基本原理

P(c)= 类c下文件总数/整个训练样本的文件总数

P(tk|c)=(类c下包含单词tk的文件数+1)/(类c下单词总数+2)

2)举例

使用前面例子中的数据,模型换成伯努利模型。

类yes下总共有3个文件,类no下有1个文件,训练样本文件总数为11,因此P(yes)=3/4, P(Chinese | yes)=(3+1)/(3+2)=4/5,条件概率如下:

P(Japan | yes)=P(Tokyo | yes)=(0+1)/(3+2)=1/5

P(Beijing | yes)= P(Macao|yes)= P(Shanghai |yes)=(1+1)/(3+2)=2/5

P(Chinese|no)=(1+1)/(1+2)=2/3

P(Japan|no)=P(Tokyo| no) =(1+1)/(1+2)=2/3

P(Beijing| no)= P(Macao| no)= P(Shanghai | no)=(0+1)/(1+2)=1/3

有了以上类条件概率,开始计算后验概率,

P(yes|d)=P(yes)×P(Chinese|yes)×P(Japan|yes)×P(Tokyo|yes)×(1-P(Beijing|yes))×(1-P(Shanghai|yes))×(1-P(Macao|yes))=3/4×4/5×1/5×1/5×(1-2/5) ×(1-2/5)×(1-2/5)=81/15625≈0.005

P(no|d)= 1/4×2/3×2/3×2/3×(1-1/3)×(1-1/3)×(1-1/3)=16/729≈0.022

因此,这个文档不属于类别china。

后记:文本分类是作为离散型数据的,以前糊涂是把连续型与离散型弄混一块了,朴素贝叶斯用于很多方面,数据就会有连续和离散的,连续型时可用正态分布,还可用区间,将数据的各属性分成几个区间段进行概率计算,测试时看其属性的值在哪个区间就用哪个条件概率。再有TF、TDIDF,这些只是描述事物属性时的不同计算方法,例如文本分类时,可以用单词在本文档中出现的次数描述一个文档,可以用出现还是没出现即0和1来描述,还可以用单词在本类文档中出现的次数与这个单词在剩余类出现的次数(降低此属性对某类的重要性)相结合来表述。

摘自: http://m.oschina.net/blog/56724


  青春就应该这样绽放   游戏测试:三国时期谁是你最好的兄弟!!   你不得不信的星座秘密

相关 [算法 文本 分类] 推荐:

[转载]基于贝叶斯算法的文本分类算法

- - 小蚊子乐园
原文地址: 基于贝叶斯算法的文本分类算法 作者: TBKKEN.     因为要做一个关于数据挖掘的算法应用PPT,虽然知道很多数据挖掘的算法怎么使用,但是需要讲解它们的原理,还真的需要耗费很多精力,之前做一个曲线拟合,已经发在博客里,现在做贝叶斯算法的基础原理. 分类是把一个事物分到某个类别中.

[原]PySpark NaiveBayes算法之中文文本分类测试

- - moxiaomomo的专栏
假设现在有N行文本,每行文本的第一列已经打好标签, Y 或 N, 用于标识该行文本是否包含敏感词汇;第二列之后的每一列是对某些句子或文本进行中文分词之后的词汇. N 朴素贝叶斯算法 是 生成模型 中 最经典 分类算法 之一 Y 这是 一条 包含 色情 的 语句. 我们现在用pyspark结合NaiveBayes分类算法来进行训练和测试,这个过程大概包括:.

分类算法概述。

- - 小彰
摘 要:分类是数据挖掘、机器学习和模式识别中一个重要的研究领域. 通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据. 分类的目的是根据数据集的特点构造一个分类函数或分类模型(也常常称作分类器),该模型能把未知类别的样本映射到给定类别中的某一个.

LibShortText - 短文本分类

- - 互联网旁观者
Chih-Jen Lin的新作.   青春就应该这样绽放   游戏测试:三国时期谁是你最好的兄弟.

数据挖掘 - 分类算法比较

- - IBM developerWorks 中国 : 文档库
随着计算能力、存储、网络的高速发展,人类积累的数据量正以指数速度增长. 对于这些数据,人们迫切希望从中提取出隐藏其中的有用信息,更需要发现更深层次的规律,对决策,商务应用提供更有效的支持. 为了满足这种需求,数据挖掘技术的得到了长足的发展,而分类在数据挖掘中是一项非常重要的任务,目前在商业上应用最多.

分类算法——决策树——经典算法比较

- - 数据库 - ITeye博客
决策树是以实例为基础的归纳学习算法. 它从一组无次序、无规则的元组中推理出决策树表示形式的分类规则. 它采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较,并根据不同的属性值从该结点向下分支,叶结点是要学习划分的类. 从根到叶结点的一条路径就对应着一条合取规则,整个决策树就对应着一组析取表达式规则.

用scipy(scikit-learn)做文本分类

- - CSDN博客研发管理推荐文章
文本挖掘的paper没找到统一的benchmark,只好自己跑程序,走过路过的前辈如果知道20newsgroups或者其它好用的公共数据集的分类(最好要所有类分类结果,全部或取部分特征无所谓)麻烦留言告知下现在的benchmark,万谢. 20newsgroups官网上给出了3个数据集,这里我们用最原始的 20news-19997.tar.gz.

基于KNN的文本分类实战

- - 樂天笔记
本文讲述如何使用scikit-learn的KNN工具对文本进行分类. K-近邻算法,简称KNN(k-Nearest Neighbor),是一个相当简单的分类/预测算法. 其主要思想就是,选取与待分类/预测数据的最相似的K个训练数据,通过对这K个数据的结果或者分类标号取平均、取众数等方法得到待分类/预测数据的结果或者分类标号.

python 中文文本分类 - CSDN博客

- -
3,结构化表示--构建词向量空间. 即已经分好类的文本资料(例如:语料库里是一系列txt文章,这些文章按照主题归入到不同分类的目录中,如 .\art\21.txt). 推荐语料库:复旦中文文本分类语料库,下载链接:http://download.csdn.net/detail/github_36326955/9747927.

[转]Tensorflow实现的CNN文本分类

- - Soul Joy Hub
在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类的模型. 本文提出的模型在一系列文本分类任务(如情感分析)中实现了良好的分类性能,并已成为新的文本分类架构的标准基准. 本文假设你已经熟悉了应用于NLP的卷积神经网络的基础知识. 如果没有,建议先阅读Understanding Convolutional Neural Networks for NLP 以获得必要的背景.