mysql中如何找出未使用或使用次数很少的索引

标签: MySQL解错方案 索引 | 发表时间:2012-12-17 07:33 | 作者:OurMySQL
出处:http://ourmysql.com

   在mysql中如何找出未使用或使用次数很少的索引,这样文章比较多,但很少文章提到用这些方法存在的风险。

    http://www.mysqlperformanceblog.com/2012/06/30/find-unused-indexes/

    http://www.mysqlperformanceblog.com/2012/12/05/quickly-finding-unused-indexes-and-estimating-their-size/

    http://www.mysqlperformanceblog.com/2009/06/26/check-unused-keys-a-tool-to-interact-with-index_statistics/

   这篇文章主要记录,我对如何找未使用索引的理解及风险(目前还未找到理想方法),能像oracle保存执行计划,根据执行计划(v$sql_plan)来判断索引使用情况是比较安全。当然oracle的index monitor特性类似percona的userstat有比较大的风险。

   以下四个工具(方法)是在mysql找未使用索引比较方便,但都存在一定风险

   1、mysqlidxchx

   2、pt-index-usage

   3、userstat

   4、check-unused-keys

   1、mysqlidxchx工具很长时间没有更新,但主要用来分析general log、slow.log,来判断实例中那个索引是可以删除,但这个工具没有经过实战,风险很大。

   2、pt-index-usage原理来类似mysqlidxchx,执行过程中性能消耗比较严重,如果要在生产库上部署,最好在凌晨业务低锋时使用,pt-index-usage只支持slow.log格式的文件,如果要全面分析整个实例索引使用情况,需要long_query_time设置成0,才能把所以的sql记录下来,但同时会对磁盘空间造成压力,同时pt-index-usage对大文件分析就是件痛苦的事。当然pt-index-usage可以考虑部分表索引使用情况的确认。

   3、最看好的userstat,收集信息性能优越,成本低。这个patch是google贡献的(userstat_running),percona把它改名成userstat,默认是不开启的,开启是会收集客户端、 、表、线程信息存储在CLIENT_STATISTICS、INDEX_STATISTICS、TABLE_STATISTICS、THREAD_STATISTICS。Userstat的 bug导致的问题太严重,直接导致mysql crash,到目前淘宝生产环境还没有使用。

   4、Ryan Lowe的check-unused-keys脚本基于userstat,能够比较方便输出需要删除的索引。

   小结:mysql能把每条sql执行计划保存在性能视图中,写入性能视图成本是非常小,用户可以根据执行计划来判断索引使用情况,分析执行计划突变的监控。

相关文章

标签: ,

相关 [mysql 次数 索引] 推荐:

mysql中如何找出未使用或使用次数很少的索引

- - OurMySQL
   在mysql中如何找出未使用或使用次数很少的索引,这样文章比较多,但很少文章提到用这些方法存在的风险.    这篇文章主要记录,我对如何找未使用索引的理解及风险(目前还未找到理想方法),能像oracle保存执行计划,根据执行计划(v$sql_plan)来判断索引使用情况是比较安全. 当然oracle的index monitor特性类似percona的userstat有比较大的风险.

ElasticSearch 索引 VS MySQL 索引

- - crossoverJie's Blog
这段时间在维护产品的搜索功能,每次在管理台看到 elasticsearch 这么高效的查询效率我都很好奇他是如何做到的. 这甚至比在我本地使用 MySQL 通过主键的查询速度还快. 这类问题网上很多答案,大概意思呢如下:. Lucene 的全文检索引擎,它会对数据进行分词后保存索引,擅长管理大量的索引数据,相对于.

[MySQL] B+树索引

- - CSDN博客推荐文章
B+树是一种经典的数据结构,由平衡树和二叉查找树结合产生,它是为磁盘或其它直接存取辅助设备而设计的一种平衡查找树,在B+树中,所有的记录节点都是按键值大小顺序存放在同一层的叶节点中,叶节点间用指针相连,构成双向循环链表,非叶节点(根节点、枝节点)只存放键值,不存放实际数据. 保持树平衡主要是为了提高查询性能,但为了维护树的平衡,成本也是巨大的,当有数据插入或删除时,需采用拆分节点、左旋、右旋等方法.

mysql 索引技巧

- - 小彰
MySQL索引的建立对于MySQL的高效运行是很重要的. 下面介绍几种常见的MySQL索引类型. 在数据库表中,对字段建立索引可以大大提高查询速度. 假如我们创建了一个 mytable表:. CREATE TABLE mytable(   ID INT NOT NULL,    username VARCHAR(16) NOT NULL  );   我们随机向里面插入了10000条记录,其中有一条:5555, admin.

mysql选择索引

- - CSDN博客数据库推荐文章
1、尽量为用来搜索、分类或分组的数据列编制索引,不要为作为输出显示的数据列编制索引. 最适合有索引的数据列是那些在where子句中数据列,在联结子句中出现的数据列,或者是在Group by 、Order by子句中出现的数据列. select 后的数据列最好不要用索引. 2、综合考虑各数据列的维度.

mysql 索引详解

- - 行业应用 - ITeye博客
本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题. 特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等. 为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论.

mysql索引认识

- - 数据库 - ITeye博客
数据在磁盘中是以 “块”的形式存储的,所以一张表涉及的数据可能会存在多个块中,而在磁盘中查询数据则会根据字段是否为有序与无序来区分,. 无序情况:1.数值具有唯一性则需要查找 总块数/2.                   2.无序+无唯一性则需要查找  总块数. 有序情况:1.数值唯一性:log2(总块数/2)   (log2是二分查找算法).

MySQL 索引方式

- - zzm
本文配图来自《高性能MySQL(第二版)》. 在数据库中,对性能影响最大的几个策略包括数据库的锁策略、缓存策略、索引策略、存储策略、执行计划优化策略. 索引策略决定数据库快速定位数据的效率,存储策略决定数据持久化的效率. MySQL中两大主要存储引擎MyISAM和InnoDB采用了不同的索引和存储策略,本文将分析它们的异同和性能.

MySql索引总结

- - 掘金后端
MySQL 索引底层数据结构.   Mysql索引使用的数据结构主要有 BTree索引 和 Hash索引. 对于Hash索引来说,底层数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,使用Hash索引查询性能最快. 其余大多数场景建议使用BTree索引. 为什么索引能够提高查询速度.

Mysql-innodb-B+索引

- - 掘金后端
这是读书笔记,Mysql,innodb系列一共3篇. Mysql-innodb-B+索引(本篇). Mysql-innodb-锁(预计20200523). Mysql-innodb-事务预计20200530). CREATE TABLE `aid_***_detail` ( //省略所有字段 PRIMARY KEY (`id`), KEY `range_idx` (`range_id`,`is_delete`,`range_detail_num`,`goods_id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4复制代码.