Bloom filter:大数据快速排除算法
Bloom filter是由 Howard Bloom在 1970 年提出的一种多哈希函数映射的快速查找算法,该算法能够在非常快速的判定某个元素是否在一个集合之外。这种检测只会对在集合内的数据错判,而不会对不是集合内的数据进行错判,这样每个检测请求返回有“在集合内(可能错误)”和“不在集合内(绝对不在集合内)”两种情况。目前 Bloom filter在分布式系统中有着广泛的使用,比如说GFS/HDFS/Cassandra/ Bigtable/ Squid。
实例
为了说明 Bloom filter存在的重要意义,举一个实例:
假设要你写一个网络蜘蛛(web crawler)。由于网络间的链接错综复杂,蜘蛛在网络间爬行很可能会形成“环”。为了避免形成“环”,就需要知道蜘蛛已经访问过那些URL。给一个URL,怎样知道蜘蛛是否已经访问过呢?稍微想想,就会有如下几种方案:
- 将访问过的URL保存到数据库。
- 用HashSet将访问过的URL保存起来。那只需接近O(1)的代价就可以查到一个URL是否被访问过了。
- URL经过MD5或SHA-1等单向哈希后再保存到HashSet或数据库。
- Bit-Map方法。建立一个BitSet,将每个URL经过一个哈希函数映射到某一位。
方法1~3都是将访问过的URL完整保存,方法4则只标记URL的一个映射位。
以上方法在数据量较小的情况下都能完美解决问题,但是当数据量变得非常庞大时问题就来了。
方法1的缺点:数据量变得非常庞大后关系型数据库查询的效率会变得很低。而且每来一个URL就启动一次数据库查询是不是太小题大做了?
方法2的缺点:太消耗内存。随着URL的增多,占用的内存会越来越多。就算只有1亿个URL,每个URL只算50个字符,就需要5GB内存。
方法3:由于字符串经过MD5处理后的信息摘要长度只有128Bit,SHA-1处理后也只有160Bit,因此方法3比方法2节省了好几倍的内存。
方法4消耗内存是相对较少的,但缺点是单一哈希函数发生冲突的概率太高。还记得数据结构课上学过的Hash表冲突的各种解决方法么?若要降低冲突发生的概率到1%,就要将BitSet的长度设置为URL个数的100倍。
实质上上面的算法都忽略了一个重要的隐含条件:允许小概率的出错,不一定要100%准确!也就是说少量url实际上没有没网络蜘蛛访问,而将它们错判为已访问的代价是很小的——大不了少抓几个网页呗。
Bloom Filter的算法
下面引入本篇的主角—— Bloom filter。其实上面方法4的思想已经很接近 Bloom filter了。方法四的致命缺点是冲突概率高,为了降低冲突的概念, Bloom filter 使用了多个哈希函数,而不是一个。
Bloom filter采用的是哈希函数的方法,将一个元素映射到一个 m 长度的阵列上的一个点,当这个点是 1 时,那么这个元素在集合内,反之则不在集合内。这个方法的缺点就是当检测的元素量很多时候可能有冲突,解决方法就是使用 k 个哈希 函数对应 k 个点,如果所有点都是 1 的话,那么元素在集合内,如果有 0 的话,元素则不再集合内。
Bloom filter 特点
Bloom filter优点就是它的插入和查询时间都是常数,另外它查询元素却不保存元素本身,具有良好的安全性。它的缺点也是显而易见的, 当插入的元素越多,错判“在集合内”的概率就越大了,另外 Bloom filter也不能删除一个元素,因为多个元素哈希的结果可能在 Bloom filter 结构中占用的是同一个位,如果删除了一个比特位,可能会影响多个元素的检测。
其实要做到能够删除一个元素,就需要修改下算法, 把bitmap修改成计数,这会带来另外一个缺点: 内存浪费。
最后附上一个PHP实现的版本,请参考: http://code.google.com/p/php-bloom-filter/
您可能也喜欢: | ||||
MurmurHash算法:高运算性能,低碰撞率的hash算法 |
DataX:在异构数据源之间交换数据的工具 |
Gizzard:Twitter开源的通用数据切分中间件 |
searchtb:淘宝搜索技术博客 |
Druid:用于实时OLAP的分布式内存数据存储引擎 |
无觅 |