Hadoop层级队列组织方式

标签: 第一代MapReduce(MRv1) Hadoop | 发表时间:2013-02-24 09:12 | 作者:Dong
出处:http://dongxicheng.org
作者: Dong | 新浪微博: 西成懂 | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及 版权声明
网址: http://dongxicheng.org/mapreduce/hadoop-hierarchy-queues/

在Hadoop 0.20.x版本或者更早的版本,Hadoop采用了平级队列组织方式,在这种组织方式中,管理员可将用户分到若干个扁平队列中,在每个队列中,可指定一个或几个队列管理员管理这些用户,比如杀死任意用户的作业,修改任意用户作业的优先级。然而,从资源管理角度看,仅仅按照队列组织用户是不够的,还需要将资源划分到这几个队列中,并按照一定的策略完成资源分配,这就需要Hadoop作业调度器的支持。总之,在Hadoop中,队列的组织是队列管理和资源分配的基础。

随着Hadoop应用越来越广泛,有用户提出需支持层级队列组织方式。典型的应用场景如下:在一个Hadoop集群中,管理员将所有计算资源划分给了若干个队列,每个队列对应了一个“组织”,其中有一个组织“Org1”,它分到了60%的资源,它内部包含3中类型的作业:

(1)产品线作业

(2)实验性作业—分属于三个不用的项目:Proj1,Proj2和Proj3

(3)其他类型作业

Org1管理员想更有效地控制这60%资源,比如将大部分资源分配给产品线作业的同时,能够让实验性作业和其他类型作业有最少资源保证。考虑到产品线作业提交频率很低,当有产品线作业提交时,必须第一时间得到资源,剩下的资源才给其他类型的作业,然而,一旦产品线作业运行结束,实验性作业和其他类型作业必须马上获取未使用的资源,一个可能的配置方式如下:

grid {

Org1 min=60% {

priority min=90% {

production min=82%

proj1 min=6% max=10%

proj2 min=6%

proj3 min=6%

}

miscellaneous min=10%

}

Org2 min=40%

}

这就引出来层级队列组织方式。

(1) 子队列

1)  队列可以嵌套,每个队列均可以包含子队列。

2)  用户只能将作业提交到最底层的队列,即叶子队列。

(2 )最少容量

1)每个子队列均有一个“最少容量比”属性,表示可以使用父队列的容量的百分比

2)调度器总是优先选择当前资源使用率最低的队列,并为之分配资源。比如同级的两个队列Q1和Q2,他们的最少容量均为30,而Q1已使用10,Q2已使用12,则调度器会优先将资源分配给Q1。

3)最少容量不是“总会保证的最低容量”,也就是说,如果一个队列的最少容量为20,而该队列中所有队列仅使用了5,那么剩下的15可能会分配给其他需要的队列。

4)最少容量的值为不小于0的数,但也不能大于“最大容量”。

(3 最大容量

1)  为了防止一个队列超量使用资源,可以为队列设置一个最大容量,这是一个资源使用上限,任何时刻使用的资源总量不能超过该值。

2) 默认情况下队列的最大容量是无限大,这意味着,当一个队列只分配了20%的资源,所有其他队列没有作业时,该队列可能使用100%的资源,当其他队列有作业提交时,再逐步归还。

如何将一个队列中的资源分配给它的各个子队列?

当一个TaskTracker发送心跳请求一个新任务时,调度器会按照以下策略为之选择任务:

1)  按照 比值{used capacity}/{minimum-capaity},对所有子队列排序;

2)  选择一个比值{used capacity}/{minimum-capaity}最小的队列:

如果是一个叶子队列,且有处于pending状态的任务,则选择一个任务(不能超过maximum capacity);

否则,递归地从这个队列的子队列中选择任务。

3)  如果没有找到任务,则查看下一个队列。

层级队列组织方式在 0.21.x和0.22.x中引入,但仅有Capacity Scheduler支持该组织方式( https://issues.apache.org/jira/browse/MAPREDUCE-824 ),当然,最新的YARN(Hadoop 0.23.x和2.0.x-alpha)也为Fair Scheduler增加了层级队列的支持,具体参考: https://issues.apache.org/jira/browse/YARN-187

如何配置?

以0.21.x为例,管理员可在配置文件mapred-queues.xml中配置层级队列,配置方式如下:

<queues>

<queue>

<name>Org1</name>

<queue>

<name>production</name>

<properties>

<property key=”capacity” value=”20″/>

<property key=” maximum-capacity” value=”20″/>

<property key=”supports-priority” value=”true”/>

<property key=”minimum-user-limit-percent” value=”30″/>

<property key=”maximum-initialized-jobs-per-user” value=”10″/>

<property key=”user-limit” value=”30″/>

</properties>

</queue>

<queue>

<name>miscellaneous</name>

<properties>

<property key=”capacity” value=”10″/>

<property key=” maximum-capacity” value=”20″/>

<property key=”user-limit” value=”20″/>

</properties>

</queue>

。。。。。。。

</queues>

管理员可在capacity-scheduler.xml中设置一些参数的默认值和Capacity独有的配置:

<configuration>

<property>

<name>mapred.capacity-scheduler.default-supports-priority</name>

<value>false</value>

</property>

<property>

<name>mapred.capacity-scheduler.default-minimum-user-limit-percent</name>

<value>100</value>

</property>

<property>

<name>mapred.capacity-scheduler.default-maximum-initialized-jobs-per-user</name>

<value>2</value>

</property>

<property>

<name>mapred.capacity-scheduler.init-poll-interval</name>

<value>5000</value>

</property>

<property>

<name>mapred.capacity-scheduler.init-worker-threads</name>

<value>5</value>

</property>

</configuration>

原创文章,转载请注明: 转载自 董的博客

本文链接地址: http://dongxicheng.org/mapreduce/hadoop-hierarchy-queues/

作者: Dong,作者介绍: http://dongxicheng.org/about/


Copyright © 2012
This feed is for personal, non-commercial use only.
The use of this feed on other websites breaches copyright. If this content is not in your news reader, it makes the page you are viewing an infringement of the copyright. (Digital Fingerprint:
)

相关 [hadoop 层级 队列] 推荐:

Hadoop层级队列组织方式

- - 董的博客
Dong | 新浪微博: 西成懂 | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及 版权声明. 网址: http://dongxicheng.org/mapreduce/hadoop-hierarchy-queues/. 在Hadoop 0.20.x版本或者更早的版本,Hadoop采用了平级队列组织方式,在这种组织方式中,管理员可将用户分到若干个扁平队列中,在每个队列中,可指定一个或几个队列管理员管理这些用户,比如杀死任意用户的作业,修改任意用户作业的优先级.

利用yarn多队列实现hadoop资源隔离 - bbaiggey_bigdata的博客 - CSDN博客

- -
大数据处理离不开hadoop集群的部署和管理,对于本来硬件资源就不多的创业团队来说,做好资源的共享和隔离是很有必要的,毕竟不像BAT那么豪,那么怎么样能把有限的节点同时分享给多组用户使用而且互不影响呢,我们来研究一下yarn多队列做资源隔离. 请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址.

Hadoop Streaming 编程

- - 学着站在巨人的肩膀上
Hadoop Streaming是Hadoop提供的一个编程工具,它允许用户使用任何可执行文件或者脚本文件作为Mapper和Reducer,例如:. 采用shell脚本语言中的一些命令作为mapper和reducer(cat作为mapper,wc作为reducer). 本文安排如下,第二节介绍Hadoop Streaming的原理,第三节介绍Hadoop Streaming的使用方法,第四节介绍Hadoop Streaming的程序编写方法,在这一节中,用C++、C、shell脚本 和python实现了WordCount作业,第五节总结了常见的问题.

Hadoop使用(一)

- Pei - 博客园-首页原创精华区
Hadoop使用主/从(Master/Slave)架构,主要角色有NameNode,DataNode,secondary NameNode,JobTracker,TaskTracker组成. 其中NameNode,secondary NameNode,JobTracker运行在Master节点上,DataNode和TaskTracker运行在Slave节点上.

Hadoop MapReduce技巧

- - 简单文本
我在使用Hadoop编写MapReduce程序时,遇到了一些问题,通过在Google上查询资料,并结合自己对Hadoop的理解,逐一解决了这些问题. Hadoop对MapReduce中Key与Value的类型是有要求的,简单说来,这些类型必须支持Hadoop的序列化. 为了提高序列化的性能,Hadoop还为Java中常见的基本类型提供了相应地支持序列化的类型,如IntWritable,LongWritable,并为String类型提供了Text类型.

Hadoop TaskScheduler浅析

- - kouu&#39;s home
TaskScheduler,顾名思义,就是MapReduce中的任务调度器. 在MapReduce中,JobTracker接收JobClient提交的Job,将它们按InputFormat的划分以及其他相关配置,生成若干个Map和Reduce任务. 然后,当一个TaskTracker通过心跳告知JobTracker自己还有空闲的任务Slot时,JobTracker就会向其分派任务.

HADOOP安装

- - OracleDBA Blog---三少个人自留地
最近有时间看看hadoop的一些东西,而且在测试的环境上做了一些搭建的工作. 首先,安装前需要做一些准备工作. 使用一台pcserver作为测试服务器,同时使用Oracle VM VirtualBox来作为虚拟机的服务器. 新建了三个虚拟机以后,安装linux,我安装的linux的版本是redhat linux 5.4 x64版本.

Hadoop Corona介绍

- - 董的博客
Dong | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及 版权声明. 网址: http://dongxicheng.org/hadoop-corona/hadoop-corona/. Hadoop Corona是facebook开源的下一代MapReduce框架. 其基本设计动机和Apache的YARN一致,在此不再重复,读者可参考我的这篇文章 “下一代Apache Hadoop MapReduce框架的架构”.

Hadoop RPC机制

- - 企业架构 - ITeye博客
RPC(Remote Procedure Call Protocol)远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议. Hadoop底层的交互都是通过 rpc进行的. 例如:datanode和namenode 、tasktracker和jobtracker、secondary namenode和namenode之间的通信都是通过rpc实现的.

Hadoop Rumen介绍

- - 董的博客
Dong | 新浪微博: 西成懂 | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及 版权声明. 网址: http://dongxicheng.org/mapreduce/hadoop-rumen-introduction/. 什么是Hadoop Rumen?. Hadoop Rumen是为Hadoop MapReduce设计的日志解析和分析工具,它能够将JobHistory 日志解析成有意义的数据并格式化存储.