hadoop深入研究:(一)——hdfs介绍

标签: hadoop 研究 hdfs | 发表时间:2013-05-31 15:31 | 作者:lastsweetop
出处:http://blog.csdn.net

转载请注明出处: http://blog.csdn.net/lastsweetop/article/details/8992505

hdfs设计原则

1.非常大的文件:

这里的非常大是指几百MB,GB,TB.雅虎的hadoop集群已经可以存储PB级别的数据

2.流式数据访问:

基于一次写,多次读。

3.商用硬件:      

 hdfs的高可用是用软件来解决,因此不需要昂贵的硬件来保障高可用性,各个生产商售卖的pc或者虚拟机即可。

hdfs不适用的场景

1.低延迟的数据访问   
hdfs的强项在于大量的数据传输,递延迟不适合他,10毫秒以下的访问可以无视hdfs,不过hbase可以弥补这个缺陷。

2.太多小文件              
 namenode节点在内存中hold住了整个文件系统的元数据,因此文件的数量就会受到限制,每个文件的元数据大约150字节
 1百万个文件,每个文件只占一个block,那么就需要300MB内存。你的服务器可以hold住多少呢,你可以自己算算

3.多处写和随机修改   
目前还不支持多处写入以及通过偏移量随机修改

hdfs block

为了最小化查找时间比例,hdfs的块要比磁盘的块大很多。hdfs块的大小默认为64MB,和文件系统的块不同,
hdfs的文件可以小于块大小,并且不会占满整个块大小。
查找时间在10ms左右,数据传输几率在100MB/s,为了使查找时间是传输时间的1%,块的大小必须在100MB左右
一般都会设置为128MB

有了块的抽象之后,hdfs有了三个优点:

1.可以存储比单个磁盘更大的文件
2.存储块比存储文件更加简单,每个块的大小都基本相同
3.使用块比文件更适合做容错性和高可用

namenodes和datanodes

hdfs集群有两种类型的节点,一种为master及namenode,另一种为worker及datanodes。

namenode节点管理文件系统的命名空间。它包含一个文件系统的树,所有文件和目录的原数据都在这个树上,这些
信息被存储在本地磁盘的两个文件中,image文件和edit log文件。文件相关的块存在哪个块中,块在哪个地方,这些
信息都是在系统启动的时候加载到namenode的内存中,并不会存储在磁盘中。

datanode节点在文件系统中充当的角色就是苦力,按照namenode和client的指令进行存储或者检索block,并且周期性
的向namenode节点报告它存了哪些文件的block

namenode节点如果不能使用了,那么整个hdfs就玩完了。为了防止这种情况,有两种方式可供选择
1.namenode通过配置元数据可以写到多个磁盘中,最好是独立的磁盘,或者NFS.
2.使用第二namenode节点,第二namenode节点平时并不作为namenode节点工作,它的主要工作内容就是定期根据编辑
日志(edit log)合并命名空间的镜像(namespace image),防止编辑日志过大,合并后的image它自己也保留一份,等着
namenode节点挂掉,然后它可以转正,由于不是实时的,有数据上的损失是很可能发生的。

hdfs Federation

namenode节点保持所有的文件和块的引用在内存中,这就意味着在一个拥有很多很多文件的很大的集群中,内存就成为了一个
限制的条件,hdfs federation在hadoop 2.x的被实现了,允许hdfs有多个namenode节点,每个管hdfs的一部分,比如一个管/usr,
另一个管/home,每个namenode节点是相互隔离的,一个挂掉不会影响另外一个。

hdfs的高可用

不管namenode节点的备份还是第二namenode节点都只能保证数据的恢复,并不能保证hdfs的高可用性,一旦namenode节点挂掉
就会产生单点故障,这时候要手动去数据备份恢复,或者启用第二节点,新的namenode节点在对外服务器要做三件事:
1.把命名空间的镜像加载到内存中
2.重新运行编辑日志
3.接受各个datanode节点的block报告
在一个大型一点的hdfs系统中,等这些做完需要30分钟左右。

2.x已经支持了高可用性(HA),通过一对namenode热备来实现,一台挂掉,备机马上提供无中断服务
要实现HA,要做三点微调:
1.namenode节点必须使用高可用的共享存储。
2.datanode节点必须象两个namenode节点发送block报告
3.客户端做改动可以在故障时切换到可用的namenode节点上,而且要对用户是无感知的

failover和fencing

将备份namenode激活的过程就叫failover,管理激活备份namenode的系统叫做failover controller,
zookeeper就可以担当这样的角色,可以保证只有一个节点处于激活状态。
必须确认原来的namenode已经真的挂掉了,很多时候只是网络延迟,如果备份节点已经激活了,
原来的节点又可以提供服务了,这样是不行的,防止原来namenode活过来的过程就叫fencing。
可以用STONITH实现, STONITH可以做到直接断电把原namenode节点fencing掉



作者:lastsweetop 发表于2013-5-31 15:31:20 原文链接
阅读:104 评论:0 查看评论

相关 [hadoop 研究 hdfs] 推荐:

hadoop深入研究:(一)——hdfs介绍

- - CSDN博客云计算推荐文章
转载请注明出处: http://blog.csdn.net/lastsweetop/article/details/8992505. 这里的非常大是指几百MB,GB,TB.雅虎的hadoop集群已经可以存储PB级别的数据.  hdfs的高可用是用软件来解决,因此不需要昂贵的硬件来保障高可用性,各个生产商售卖的pc或者虚拟机即可.

Hadoop剖析之HDFS

- - CSDN博客数据库推荐文章
Hadoop的分布式文件系统(HDFS)是Hadoop的很重要的一部分,本文先简单介绍HDFS的几个特点,然后再分析背后的原理,即怎样实现这种特点的. 这是HDFS最核心的特性了,把大量数据部署在便宜的硬件上,即使其中某些磁盘出现故障,HDFS也能很快恢复丢失的数据. 这个的意思是HDFS适合一次写入,多次读取的程序,文件写入后,就不需要修改了.

Hadoop之HDFS子框架

- - CSDN博客云计算推荐文章
由图片可以看到HDFS主要包含这样几个功能组件. Namenode:存储文档的元数据信息,还有整个文件系统的目录结构. DataNode:存储文档块信息,并且文档块之间是有冗余备份的. 这里面提到了文档块的概念,同本地文件系统一样,HDFS也是按块存储的,只不过块的大小设置的相对大一些,默认为64M.

Hadoop优化 第一篇 : HDFS/MapReduce - leocook

- - 博客园_首页
比较惭愧,博客很久(半年)没更新了. 最近也自己搭了个博客,wordpress玩的还不是很熟,感兴趣的朋友可以多多交流哈. 地址是:http://www.leocook.org/. 另外,我建了个QQ群:305994766,希望对大数据、算法研发、系统架构感兴趣的朋友能够加入进来,大家一起学习,共同进步(进群请说明自己的公司-职业-昵称).

flume写入hadoop hdfs报错 Too many open files

- - CSDN博客云计算推荐文章
网络搜索,怀疑linux nofile超过最大限制,当前设置大小1024,默认值. 而查看flume进程打开的文件数量为2932(这个比较奇怪,怎么超过1024了呢. 1.修改nfile配置文件,手工增加nofile的大小. 2.重启flume进程,也就是进程29828,问题解决. 作者:hijk139 发表于2013-2-17 16:37:34 原文链接.

Apache Hadoop 1.0.0支持Kerberos验证,支持Apache HBase,提供针对HDFS的RESTful API

- - InfoQ中文站
海量数据框架Apache Hadoop怀胎六年终于瓜熟蒂落发布1.0.0版本. 本次发布的核心特性包括支持Kerberos身份验证,支持Apache HBase,以及针对HDFS的RESTful API. InfoQ就此次发布请Apache Hadoop项目的VP——Arun Murthy回答了几个问题.

Hadoop分布式文件系统HDFS和OpenStack对象存储系统Swift有何不同?

- - ITeye博客
HDFS使用 集中式单一节点架构(NameNode)来维护文件系统元数据,而在Swift中,元数据 分布在整个集群中并拥有多个副本. 注意:集中式元数据存储使HDFS存在单点故障和扩展性问题,因此规模越大就性能越低,就越难扩展甚至不能扩展,所幸的是HDFS2使用NameNode HA和HDFS Federation解决了这两个问题.

hadoop/spark关闭钩子研究

- - 开源软件 - ITeye博客
引子:在使用spark和hadoop的时候,遇到一些进程退出时的报错. 因此顺便研究了一下jvm以及一些开源框架的关闭钩子的机制. 这篇文章不涉及底层native实现,仅限Java层面. 注册jvm关闭钩子通过Runtime.addShutdownHook(),实际调用ApplicationShutdownHooks.add().

HDFS-压缩

- - Java - 编程语言 - ITeye博客
文件压缩带来了两大益处1)减少存贮空间2)加速网络(磁盘)传输. 基于大数据的传输,都需要经过压缩处理. 压缩格式 工具 算法 文件扩展名 可分块. Java代码 复制代码 收藏代码. 24.        // io.compression.codecs 定义列表中的一个 . Native gzip 库减少解压缩时间在50%,压缩时间在10%(同java实现的压缩算法).

HDFS架构

- - 数据库 - ITeye博客
       在阅读了GFS的论文之后,对GFS的框架有了基本的了解,进一步学习自然是对HDFS的解析,不得不说,之前对GFS的一些了解,对理解HDFS还是很有帮助的,毕竟后者是建立在前者之上的分布式文件系统,二者在框架上可以找到很多的共同点,建议初次接触HFDS的技术人员可以先把GFS的那篇论文啃个两三遍,毕竟磨刀不砍柴工.