严格的讲,上面章节提到例子是“协同过滤” -- 仅仅基于user和item关系的生产推荐系统。这些技术不需要item自己的属性信息。在某种程度上,这是一个优点,该推荐系统框架不需要关心“item”是书、主题公园、花、甚至人,因为他们的任何属性都没有作为输入数据。
有很多其他的方法基于item的属性,一般被称之为“基于内容”的推荐技术。例如,如果一个朋友推荐一本书给你,因为这是一本Manning出版的书,这个朋友喜欢其他Manning的书,那么你的这个朋友在做类似于基于内容推荐的事情。这种想法基于书籍的属性:出版社。Mahout推荐框架没有直接实现这些技术,尽管它提供一些方法将item的属性信息添加到计算中。基于这些,技术上称前面的方法为协同过滤框架。
这些技术没有没什么问题;正相反,他们工作的很好。他们是特定领域的方法,可能很难有效地将他们整理到一个框架中。为了建立一个基于内容的图书推荐系统,我们需要决定书籍的哪些属性对推荐系统是有意义的、作用多少程度 -- 页数、作者、出版社、颜色、字体。但是这些知识不能简单的应用于别的领域;像图书推荐的方法对披萨配料推荐是没什么帮助的。
基于这个原因,Mahout没有过多涉及这种类型的推荐。可以将这些想法融入进来,但首要任务是Mahout提供些什么。其中的一个样例将在下一个章节中讲解,在那里你将建立一个约会网站的推荐引擎。在介绍完Mahout基于协同过滤推荐的实现后,你有机会探索它和基于内容的推荐之间关系的细节。
现在,很多人已经看到了推荐系统在现实网站上的实现,像Amazon或者Netflix:基于浏览和交易历史,页面将产生一个认为对你有吸引力的商品列表。这类推荐引擎在上世纪九十年代已经出现,但直到现在它仍然是使用大型计算机的专门研究者的领域。因为这些技术已经变更加主流,对它们的需求在增加,开源实现的提供也是一样。随着理解的深入和计算资源越来越廉价,推荐引擎变得越来越容易接近和广泛使用。
Mahout包含了一个推荐引擎 -- 有很多类型,实际上都是源于传统的user-based和item-based推荐系统。它还包含了基于“slope-one”技术的实现,一个新的、有效的方法。你将会找到很多实验性的、初步的的SVD(singular value decomposition)实现。下面的章节将重新看Mahout的内容。在这些章节中,你将看到数据展示、浏览可用的推荐算法,评价推荐系统的有效性,针对特殊问题协调和定制推荐系统,最后看一下分布式计算。
为了探索Mahout中的推荐系统,最好从一个很小的示例入手。推荐系统的输入是必要的 -- 这些数据是推荐的基础。因为非常熟悉的推荐系统引擎将item推荐给user,很容易的认为偏好是user和item之间的联系 -- 尽管前面提到了user和item可以是任何事物。偏好包含了一个user ID和一个item ID,通常情况下,一个数值代表了user对item偏好的强度。Mahout中ID都是数值,实际上是整数。偏好值可以是任何值,值越大代表这正向偏好越大。例如,这些值可能是1到5的打分,user将1给于他不喜欢的,5给他很喜欢的。
创建一个文本文件包含用户数据,命名为“1”到“5”,他们对四本书的偏好,简单的称之为“101”到“104”。在现实情况中,这些可能是公司数据库中消费者ID和产品ID;Mahout并不需要user和item的ID一定为数值类型。使用下面的格式,生成文件intro.csv。
1,101,5.0
1,102,3.0
1,103,2.5
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0
经过一些学习之后,趋势就显现出来了。用户1和用户5具有相同的兴趣。他们都喜欢101这本书,对102的喜欢弱一些,对103的喜欢更弱。同理,用户1和4具有相同的兴趣,他们都喜欢101和103,没有信息显示用户4喜欢102。另一方面,用户1和用户2的兴趣好像正好相反,用户1喜欢101,但用户2讨厌101,用户1喜欢103而用户2正好相反。用户1和3的交集很少,只有101这本书显示了他们的兴趣。看图2.1可能显现了user和item之间的关系,可能是正的也可能是负的。
2.2.2 创建推荐系统
那么你应该给用户1推荐哪本书?不是101, 102或者103,因为用户已经知道自己对他们感兴趣,推荐系统需要发现新的事物。直觉告诉我们,用户4、5与用户1类似,所以推荐一些用户4和5喜欢的书籍给用户1可能是不错的。这样使得104、105和106成为可能的推荐。整体上看,104是最有可能的一个推荐,这基于item 104的4.5和4.0的偏好打分。现在运行下面的代码:
Listing 2.2 a simple user-based recommender program with mahout 代码
-
package mia.recommender.ch02;
-
-
import org.apache.mahout.cf.taste.impl.model.file.*;
-
import org.apache.mahout.cf.taste.impl.neighborhood.*;
-
import org.apache.mahout.cf.taste.impl.recommender.*;
-
import org.apache.mahout.cf.taste.impl.similarity.*;
-
import org.apache.mahout.cf.taste.model.*;
-
import org.apache.mahout.cf.taste.neighborhood.*;
-
import org.apache.mahout.cf.taste.recommender.*;
-
import org.apache.mahout.cf.taste.similarity.*;
-
import java.io.*;
-
import java.util.*;
-
-
class RecommenderIntro {
-
-
private RecommenderIntro() {
-
}
-
-
public static void main(String[] args) throws Exception {
-
DataModel model = new FileDataModel(new File("intro.csv"); A
-
-
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
-
UserNeighborhood neighborhood = new NearestNUserNeighborhood(2,
-
similarity, model);
-
-
Recommender recommender = new GenericUserBasedRecommender(model,
-
neighborhood, similarity); B
-
-
List<RecommendedItem> recommendations = recommender.recommend(1, 1); C
-
-
for (RecommendedItem recommendation : recommendations) {
-
System.out.println(recommendation);
-
}
-
-
}
-
-
}
A 加载数据文件
B 创建推荐系统引擎Create the recommender engine
C 对user1, 推荐一个item
为了简洁,后面许多其他章节的示例中,代码列表将省略imports、类声明、方法声明,只是重复程序语句。为展示很好的展示各个模块之间的关系,请看图2.2。并不是Mahout中所有的推荐都是这样的,但这幅图可以给你一个样例的逻辑的初步印象。
接下来两章,在更细节的讨论这些模块之前,我们可以总结一下每个模块所扮演的角色。DataModel存储了所有的偏好信息,提供了对user和item信息的访问。UserSimiliarity提供了两个用户如何相似的概念,这可能基于很多可能的矩阵和计算之一。UserNeighborhood定义了一个给定用户的用户组的概念。最终,一个推荐系统将这些模块组合在一起将items推荐给users和相关功能。
2.2.3 分析输出
使用你细化的IDE编译运行,运行程序的输出应该是:RecommendedItem[item:104, value:4.257081]
请求一个推荐结果并得到一个。推荐系统引擎将书104推荐给用户1。甚至,这样做是因为推荐系统引擎将用户1对书104的偏好是4.3,这是所有推荐结果的最高打分。
这个结果并不算坏。107没有出现,本应该也是可以推荐的,但它只是和另一个具有不同爱好的user相关联。选104而不是106,因为104的打分高一些。还有,输出结果包含了一个用户1喜欢104的评估值 -- 是介于用户4和5所表示的介于4.0和4.5的一个值。
直接看数据正确的结果并不明显,但是推荐系统引擎推荐了一个得体的结果。如果对从这个简单程序给出的有用并不明显的结果感到有一种愉快的刺痛,那么机器学习的世界是适合你的。
小数据集、产生推荐结果是一件微不足道的事情。现实中,数据集很大,并且噪声数据很多。例如,想象一个新闻网站推荐新闻给用户。偏好从文章的点击中获取。但是,这里面的很多点击都是伪造的 -- 可能很多读者点击一篇文章但他不一定喜欢它,或者点错了。可能很多点击都是在未登录的时候发生的,不能将其关联到一个用户。想象一下数据集有多大,可能是每月几十亿的点击量。
要从数据集产生正确的推荐结果并快速计算出是一件不一般的事情。稍后我们将展示工具Mahout如何解决这些问题。他将展示标准方法如何产生差的推荐结果或者占用了大量的cpu和内存时间,如何配置Mahout以提升性能。
2.3 评价推荐系统
推荐系统引擎是一个工具,一种回答问题的手段,“对用户来讲什么是最好的推荐?”,在研究回答的前先研究一下这个问题。一个好的推荐的准确含义是什么?如何知道推荐系统是如何生成推荐的?下面的章节将探索推荐系统的评价,在寻找特定推荐系统时,这将是一个有用的工具。
最好的推荐系统是心理学的范畴,有人在你做事情之前知道确切的知道你还没有看过的、或者没有任何现象说明你喜欢的一些item,以及你对这些item的喜欢程度。
大部分的推荐引擎通过给item评价打分来实现。所以,评价推荐引擎的一种方式是评价它的评估偏好值的质量 -- 评价评估偏好和实际偏好的匹配度。
2.3.1 训练集和打分
“真实偏好”并不充分,没有人会知道你将来是否会喜欢一些新的item。推荐引擎可以通过设置一部分真实数据作为测试数据。这些测试数据偏好在训练集中并不展示偏好值 -- 要求推荐系统对这些缺少偏好值的数据作出评估,并比较和实际值的差距。
对于推荐系统产生一系列打分是很简单的。例如,计算评估值和实际值之间的平均距离,在这种方法下,分值越低越好。0.0表示非常好的评估 -- 评估值和实际值根本没有差距。
均方根(root-mean-square)也是一种方法,也是分值越低越好。
上面的表中展示了实际偏好度和评估偏好度集合的不同值,以及如何将它们转化为打分。均方根能比较重的处罚距离远的,例如item2,这是基于某种考虑在内的。因为平均距离容易理解,接下来的示例将使用它作为评估方法。
2.3.1 运行RecommenderEvaluator
下面是代码示例:
大部分的操作发生在evaluate()这个方法中。内部,RecommenderEvaluator将数据划分为训练集和测试集,创建一个新的训练DataModel和推荐引擎测试,比价评估结果和实际结果。
注意,没有将Recommender传给方法,这是因为在其内部,将基于创建的训练集的DataModel创建一个Recommender。所以调用者必须提供一个RecommenderBuilder对象用于从DataModel创建Recommender。
2.3.3 评估结果
程序打印出了评估结果:一个表明推荐系统表现如何的打分。在这种情况下你能看到很简单的1.0。尽管评价器内部有很多随机方法去选择测试数据,结果可能是一致的因为RandomUtils.useTestSeed()的使用,每次选取的随机数都一样。这只用于示例、单元测试来保证重复的结果。不要在真是数据上用它。
AverageAbsoluteDifferenceRecommenderEvaluator
基于AverageAbsoluteDifferenceRecommenderEvaluator实现,得到的这个值是什么含义?1.0意味着,平均意义上,推荐系统评估偏好和实际偏好的的距离是1.0.
1.0早1-5规模上并不大,但是我们的数据太少。如果数据集被随机划分结果可能不一样,因此训练、测试数据集可能每次跑都不一样。
这种技术可以应用于任何Recommender和DataModel。使用均方根打分的实现类RMSRecommenderEvaluator
替代AverageAbsoluteDifferenceRecommenderEvaluator。
evaluate()的null参数是DataModelBuilder的实例,用于控制训练DataModel是如何从训练数据上建立的。正常情况下默认就好,如果需要,可以使用特别实现的DataModel。DataModelBuilder用于将DataModel注入评价过程中。
参数1.0表示使用整个数据集的比例。这样用于产生一个很快的、可能精度低一些的评价方式。例如,0.1可能意味着用数据集的10%,忽略其他90%。这对于快速检测到Recommender的细微变化是非常有用的。
2.4 评估准确率和召回率
借用更普遍的看法,我们接收经典的信息检索矩阵去评价推荐系统:准确率和召回率。这些是用于搜索引擎的术语,通过query从众多可能结果中返回最好结果集。
一个搜索引擎不应该在靠前的结果中返回不相关的搜索结果,即使他致力于得到尽可能多的相关结果。"准确率"是指在靠前的结果中相关结果所占的比例,当然这种相关是某种程度上我们定义的相关。"precision at 10"应该是从前10个结果中判断得到的准确率。“召回率”靠前的结果中相关结果占的比例。看图2.3可以有一些直观的概念。
这些术语也可以应用到推荐系统中:准确率是靠前的推荐中好的推荐所占的比例,召回率是指出现在靠前推荐中好的推荐占整个好的推荐的比例。
2.4.1 运行RecommenderIRStatsEvaluator
Mahout提供了非常简单的方式为推荐系统计算结果。