- - 互联网 - ITeye博客
Mahout 是机器学习和数据挖掘的一个分布式框架,区别于其他的开源数据挖掘软件,它是基于hadoop之上的; 所以hadoop的优势就是Mahout的优势. http://mahout.apache.org/ 上说的Scalable就是指hadoop的可扩展性. Mahout用map-reduce实现了部分数据挖掘算法,解决了并行挖掘的问题.
- - CSDN博客云计算推荐文章
一 下载mahout并解压. JAVA_HOME mahout运行需指定jdk的目录. MAHOUT_JAVA_HOME指定此变量可覆盖JAVA_HOME值. HADOOP_HOME 如果配置,则在hadoop分布式平台上运行,否则单机运行. HADOOP_CONF_DIR指定hadoop的配置文件目录.
- - CSDN博客云计算推荐文章
mahout 实用教程 (一). 本文力求把mahout从使用的角度为读者建立一个框架,为后续的使用打下基础. 本文为原创文章转载请注明原网址 http://blog.csdn.net/comaple,谢谢. 下面首先给出源代码svn地址以及用于测试的公共数据集,大家可以下载并测试. mahout svn仓库地址: http://svn.apache.org/repos/asf/mahout/trunk.
- - ITeye博客
使用命令:mahout -h.
在Mahout实现的机器学习算法见下表:. EM聚类(期望最大化聚类). 并行FP Growth算法. 并行化了Watchmaker框架. 非Map-Reduce算法. 扩展了java的Collections类. Mahout最大的优点就是基于hadoop实现,把很多以前运行于单机上的算法,转化为了MapReduce模式,这样大大提升了算法可处理的数据量和处理性能.
- - 小鸥的博客
Mahout推荐算法分为以下几大类. 2.相近的用户定义与数量. 2.用户数较少时计算速度快. 1.基于item的相似度. 1.item较少时就算速度更快. 2.当item的外部概念易于理解和获得是非常有用. 1基于SlopeOne算法(打分差异规则). 当item数目十分少了也很有效. 需要限制diffs的存储数目否则内存增长太快.
- - 开源中国社区最新新闻
Apache Mahout 0.8 发布了,Apache Mahout 是 Apache Software Foundation (ASF) 开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在 Apache 在许可下免费使用. 该项目已经发展到了它的最二个年头,目前只有一个公共发行版.
- - CSDN博客推荐文章
Apache Mahout 是 Apache Software Foundation(ASF) 旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序. 经典算法包括聚类、分类、协同过滤、进化编程等等,并且,在 Mahout 中还加入了对Apache Hadoop的支持,使这些算法可以更高效的运行在云计算环境中.
- - zzm
Mahout使用了Taste来提高协同过滤算法的实现,它是一个基于Java实现的可扩展的,高效的推荐引擎. Taste既实现了最基本的基 于用户的和基于内容的推荐算法,同时也提供了扩展接口,使用户可以方便的定义和实现自己的推荐算法. 同时,Taste不仅仅只适用于Java应用程序,它 可以作为内部服务器的一个组件以HTTP和Web Service的形式向外界提供推荐的逻辑.
- - zzm
Mahout推荐算法API详解. Hadoop家族系列文章, 主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等.