hive 0.10 0.11新增特性综述

标签: hive 综述 | 发表时间:2013-09-16 22:02 | 作者:lalaguozhe
出处:http://blog.csdn.net

我们的hive版本升迁经历了0.7.1 -> 0.8.1 -> 0.9.0,并且线上shark所依赖的hive版本也停留在0.9.0上,在这些版本上有我们自己的bug fix patch和feature enhancement。但是Hive的版本升级很快,新版本中修复了大量bug,新增了很多功能,非常令人兴奋,其中包括对未来hadoop升级为YARN的支持。所以我们准备将hive版本升级为0.11(最近看到mailist上0.12版本也快呼之欲出了,但是保险起见,还是先升级为0.11),  另外shark的github上也已经拉出了hive 0.11分支来支持新版本。


因为是从0.9一下跳过0.10跨越到0.11,所以调研和测试会cover掉hive 0.10和0.11

从hive的release note上,0.10新加的feature和bug fix如下:
1. 支持Cube, Grouping and Rollup语法,可以进行多级group by
https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation,+Cube,+Grouping+and+Rollup


2. 对于简单的不需要聚合的类似SELECT <col> from <table> LIMIT 20语句,不需要起MapReduce job,直接通过Fetch task获取数据
https://issues.apache.org/jira/browse/HIVE-887


3. 新增"Explain dependency"语法,以json格式输出执行语句会读取的input table和input partition信息,这样debug语句会读取那些表就很方便了
https://issues.apache.org/jira/browse/HIVE-3610

hive (default)> explain dependency select count(1) from abc;
OK
Explain
{"input_partitions":[],"input_tables":[{"tablename":"default@abc","tabletype":"MANAGED_TABLE"}]}
Time taken: 0.095 seconds, Fetched: 1 row(s)

4. 新增"show create table"语法,这样能知道是如何创建表的。之前我们很暴力,直接读取metastore dababase信息来重建表结构信息,如果一旦metastore schema升级,就很容易出问题,这次hive应该是通过metastore client api实现了这个功能,非常靠谱。

https://issues.apache.org/jira/browse/HIVE-967


5. HWI用bootstrap前端框架重写了一边,这个对我们帮助不大,因为我们已经有Hive web了


6. Hadoop 2 - YARN的兼容性支持


7. List Bucketing Table,优化处理有数据倾斜的表
https://cwiki.apache.org/confluence/display/Hive/ListBucketing


8. Union优化,如果Union语句的parent是mapreduce job,那么它会先将结果写入临时文件中,Union再读取这些临时文件写入最终目录,上层语句再读取最终目录,这样导致结果文件读了两遍。优化策略就是结果数据直接往最终目录上写
https://cwiki.apache.org/confluence/display/Hive/Union+Optimization


9. skew join 优化
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization


10. metastore支持在server side做authorization验证
https://issues.apache.org/jira/browse/HIVE-3705


11. metastore thrift reconnect支持,当metastore client链接一台metastore thrift server抛出异常,如果用户在conf之指定了多个metastore uris,hive会重新对另外一个建立链接,这个对用户端是透明的
https://issues.apache.org/jira/browse/HIVE-3400

12. 记录column统计信息, analyze语句会统计hive table partitions column信息到metastore里面(比如记录long类型column的low value, high value, num nulls, numDVs),同时提供了metastore api接口来访问这些信息,目前的hive优化策略都是基于rule-based的,而有了这些统计信息有助于未来建立cost-based 执行计划策略
语法如下:
analyze table t [partition p] compute statistics for [columns c,...];
https://cwiki.apache.org/confluence/display/Hive/Column+Statistics+in+Hive

13. 支持cross join语法
https://issues.apache.org/jira/browse/HIVE-2549

14. 支持SHOW TBLPROPERTIES语法
https://issues.apache.org/jira/browse/HIVE-2530


----------------------------------------------------不是那么华丽的分割线--------------------------------------------------


Hortonworks发布了一个叫stinger的项目计划,分阶段逐步改善Hive的性能,包括优化器的改进,ORCFile支持,基于DAG的Tez,向量执行引擎,0.11其实就是stinger phase one的产物

0.11 新增的Feature:
1. 把Hcatalog整合到hive里面了,而不是独立的项目

2. 支持ORCFile文件格式,基于列存储,文件内置有inline index,可以基于文件做predicate pushdown,根据stripe的元数据来选择是否跳过stripe,大大降低input size
https://cwiki.apache.org/Hive/languagemanual-orc.html

3. 支持windowing和analytics方法,比如lead/lag, row_number, rank, first, last函数
https://cwiki.apache.org/Hive/languagemanual-windowingandanalytics.html

4. Join优化,包括broadcast join和SMB join,对于在多个相同列上做join的表(star join)已经不依赖于用户指定的hint token了,可以自动转化多个MapReduce job为一个MapReduce job
https://issues.apache.org/jira/browse/HIVE-3403


5. unset TBLPROPERTY
ALTER TABLE tableName UNSET TBLPROPERTIES IF EXISTS (key1, key2, ...)

6. group by 语法增强,group by除了可以跟column alias,也可以跟column position
比如:select f1(col1), f2(col2), f3(col3), count(1) group by f1(col1), f2(col2), f3(col3);可以写成select f1(col1), f2(col2), f3(col3), count(1) group by 1, 2, 3;
https://issues.apache.org/jira/browse/HIVE-581

7. 增加decimal data格式
https://issues.apache.org/jira/browse/HIVE-2693

8. 支持truncate语法,truncate会删除表和分区下的所有数据,但是metadata信息会保留

9. 新增Hive Server 2,解决之前存在的security和concurrency问题。同时新增加了Beeline CLI(基于SQLLine),可以在command-line中以交互式的访问Hive Server 2
https://issues.apache.org/jira/browse/HIVE-2935

10. 增强Query Plan优化策略,会删除冗余的operator
https://issues.apache.org/jira/browse/HIVE-948


接下来会重点对几个新增特性,比如Hive Server 2, ORCFile, SMB join等做更深入的调研和测试


本文链接 http://blog.csdn.net/lalaguozhe/article/details/11730817,转载请注明

作者:lalaguozhe 发表于2013-9-16 14:02:13 原文链接
阅读:126 评论:2 查看评论

相关 [hive 综述] 推荐:

hive 0.10 0.11新增特性综述

- - CSDN博客云计算推荐文章
我们的hive版本升迁经历了0.7.1 -> 0.8.1 -> 0.9.0,并且线上shark所依赖的hive版本也停留在0.9.0上,在这些版本上有我们自己的bug fix patch和feature enhancement. 但是Hive的版本升级很快,新版本中修复了大量bug,新增了很多功能,非常令人兴奋,其中包括对未来hadoop升级为YARN的支持.

hive调优

- - 互联网 - ITeye博客
一、    控制hive任务中的map数: . 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);.

hive 优化 tips

- - CSDN博客推荐文章
一、     Hive join优化. 也可以显示声明进行map join:特别适用于小表join大表的时候,SELECT /*+ MAPJOIN(b) */ a.key, a.value FROM a join b on a.key = b.key. 2.     注意带表分区的join, 如:.

Hive中的join

- - CSDN博客云计算推荐文章
select a.* from a join b on a.id = b.id select a.* from a join b on (a.id = b.id and a.department = b.department). 在使用join写查询的时候有一个原则:应该将条目少的表或者子查询放在join操作符的左边.

hive优化(2)

- - 开源软件 - ITeye博客
Hive是将符合SQL语法的字符串解析生成可以在Hadoop上执行的MapReduce的工具. 使用Hive尽量按照分布式计算的一些特点来设计sql,和传统关系型数据库有区别,. 所以需要去掉原有关系型数据库下开发的一些固有思维. 1:尽量尽早地过滤数据,减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段.

hive优化

- - 开源软件 - ITeye博客
hive.optimize.cp=true:列裁剪. hive.optimize.prunner:分区裁剪. hive.limit.optimize.enable=true:优化LIMIT n语句. hive.limit.optimize.limit.file=10:最大文件数.   1.job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默认128MB).

Hive优化

- - 互联网 - ITeye博客
     使用Hive有一段时间了,目前发现需要进行优化的较多出现在出现join、distinct的情况下,而且一般都是reduce过程较慢.      Reduce过程比较慢的现象又可以分为两类:. 情形一:map已经达到100%,而reduce阶段一直是99%,属于数据倾斜. 情形二:使用了count(distinct)或者group by的操作,现象是reduce有进度但是进度缓慢,31%-32%-34%...一个附带的提示是使用reduce个数很可能是1.

hive bucket 桶

- - CSDN博客推荐文章
对于每一个表(table)或者分区,Hive可以进一步组织成桶. Hive也是针对某一列进行桶的组织. Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中. 采用桶能够带来一些好处,比如JOIN操作. 对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作. 那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量.

hive mapjoin使用

- - 淘剑笑的博客
今天遇到一个hive的问题,如下hive sql:. 该语句中B表有30亿行记录,A表只有100行记录,而且B表中数据倾斜特别严重,有一个key上有15亿行记录,在运行过程中特别的慢,而且在reduece的过程中遇有内存不够而报错. 为了解决用户的这个问题,考虑使用mapjoin,mapjoin的原理:.

hive优化

- - 互联网 - ITeye博客
1:尽量尽早地过滤数据,减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段. 2:尽量原子化操作,尽量避免一个SQL包含复杂逻辑. 可以使用中间表来完成复杂的逻辑. 3:单个SQL所起的JOB个数尽量控制在5个以下. 4:慎重使用mapjoin,一般行数小于2000行,大小小于1M(扩容后可以适当放大)的表才能使用,小表要注意放在join的左边(目前TCL里面很多都小表放在join的右边).