非码农也能看懂的“机器学习”原理

标签: 码农 机器学习 原理 | 发表时间:2013-09-17 17:02 | 作者:libsaw
出处:http://tech2ipo.com/feed

我们先来说个老生常谈的情景:某天你去买芒果,小贩摊了满满一车芒果,你一个个选好,拿给小贩称重,然后论斤付钱。

自然,你的目标是那些最甜最成熟的芒果,那怎么选呢?你想起来,啊外婆说过,明黄色的比淡黄色的甜。你就设了条标准:只选明黄色的芒果。于是按颜色挑好、付钱、回家。啊哈,人生完整了?

呵呵呵。


告诉你吧人生就是各种麻烦

等你回到家,尝了下芒果。有些确实挺甜,有些就不行了。额~显然,外婆教的金科玉律还不够用,光看颜色不靠谱哪。

闭关研究大半天以后,你得出结论:大个的明黄色芒果必然甜,小个的,就只有一半几率会是甜的了。

于是下次,你满意地带着这个结论再去买芒果,却发现你经常光顾的那个小贩关门度假去了。好吧,换家店,结果人家的进货渠道还不一样,那芒果是另一个地方种的。你这套法则不管用了,又得从头再来。好吧,这家店里每种芒果你都尝了下,总结出来小个淡黄色的最甜。

还没结束。你远房表妹又来找你玩了。要招待些好的吧?但她说了,她无所谓芒果甜不甜,汁水多就行。好呗,你还得再做一次实验,找到芒果越软汁水越多的规律。

接着你又移民了。一尝这边的芒果,咦,新世界的大门打开了。绿色的芒果居然比黄色的好吃……

最后,你结婚了,领导表示不爱吃芒果,要吃苹果。于是你所有关于芒果的知识都没用了。只能按老方法再重新研究遍苹果的物理特征跟它味道好不好之间的关系。苹果吃到吐?没办法,你爱老婆嘛。


有请码农

好了,现在想象下,这一路辛酸曲折的,你写了组程序帮忙减轻负担。那程序逻辑基本应该类似这样:

预设变量 颜色、大小、店家、硬度

如 颜色=明黄

   大小=大

   店家=经常光顾的小贩

则 芒果=甜

如 硬度=软

则 芒果=多汁

用着很爽吧,你甚至可以把这套玩意儿发给你小弟,他挑来的芒果也包你满意。

但每做一次新实验,你就得人肉改一次程序逻辑。而且你得首先保证自己已经理解了选芒果那套错综复杂的艺术,才能把它写进程序里。如果要求太复杂、芒果种类太多,那光把所有挑选规则翻译成程序逻辑就够你出一身大汗,相当于读个“芒果学”博士了。

不是所有人都有“读博”的功夫的。


有请“机器学习”算法

机器学习算法其实就是普通算法的进化版。通过自动学习数据规律,让你的程序变得更聪明些。

你从市场上随机买一批芒果( 训练数据),把每只芒果的物理属性列一个表格出来,比如颜色、大小、形状、产地、店家,等等( 特征),对应芒果的甜度、汁水多少、成熟度,等等( 输出变量)。然后把这些数据扔给机器学习算法( 分类/回归),它就会自己计算出一个芒果物理属性与其品质之间的相关性模型。

等下一次你去采购时,输入店里在卖的芒果的物理属性( 测试数据),机器学习算法就会根据上次计算出来的模型来预测这些芒果品质如何。机器用的算法可能跟你人肉写的逻辑规则类似(比如决策树),也有可能更先进,但反正基本上你不用多虑。

好啦,现在你可以信心满满去买芒果了,颜色大小啥的都是浮云,交给机器去操心呗。更妙的是,你的算法还会逐渐进化( 强化学习):根据其预测结果的正误,算法会自行修正模型,那么随着训练数据的积累,到后来它的预测就会越来越准确。最妙的来了,用同一个算法,你可以做好几个模型,苹果桔子香蕉葡萄各给爷来上一套,不要说老婆有令,就是七大姑八大婶各有所好,也再不用发愁了。

用一句话总结 机器学习就是:走自己的屌丝路,让你的算法牛逼去吧。

来源: Quora




相关 [码农 机器学习 原理] 推荐:

非码农也能看懂的“机器学习”原理

- - TECH2IPO创见
我们先来说个老生常谈的情景:某天你去买芒果,小贩摊了满满一车芒果,你一个个选好,拿给小贩称重,然后论斤付钱. 自然,你的目标是那些最甜最成熟的芒果,那怎么选呢. 你想起来,啊外婆说过,明黄色的比淡黄色的甜. 你就设了条标准:只选明黄色的芒果. 告诉你吧人生就是各种麻烦. 额~显然,外婆教的金科玉律还不够用,光看颜色不靠谱哪.

机器学习五步走

- - 我爱机器学习
经常会有人问“我该如何在机器学习方面更进一步,我不知道我接下来要学什么了. 一般我都会给出继续钻研教科书的答案. 每当这时候我都会收到一种大惑不解的表情. 但是进步确实就是持续的练习,保持较强的求知欲,并尽你可能的完成具有挑战性的工作. 因为他是为数不多的几种可以让你真真让你获取坚实知识的媒介. 是的,你可以选择选一门课,注册MOOC,参加一些讨论班.

机器学习之路

- - 我爱机器学习
自从答应简二毛博士将自己的机器学习历程和心得分享给大家至今,转眼间半年已经过去了,感谢简博士分享和开源精神的鼓舞,这也正是本系列关于机器学习介绍博客的动力来源. 之前有些网友,师弟们问我,学习机器学习怎么入手,从看什么书开始. 如果你只愿意看一本书,那么推荐Bishop的PRML,全名Pattern Recognition and Machine Learning. 这本书是机器学习的圣经之作,尤其对于贝叶斯方法,介绍非常完善.

机器学习算法Boosting

- - 标点符
机器学习通常会被分为2大类:监督学习和非监督学习. 在监督学习中,训练数据由输入和期望的输出组成,然后对非训练数据进行预测输出,也就是找出输入x与输出y之间的函数关系F:y = F(x). 根据输出的精确特性又可以分为分类和回归. 分类和回归的区别在于输出变量的类型. 定量输出称为回归,或者说是连续变量预测.

Mahout实现的机器学习算法

- - ITeye博客
使用命令:mahout -h.   在Mahout实现的机器学习算法见下表:. EM聚类(期望最大化聚类). 并行FP Growth算法. 并行化了Watchmaker框架. 非Map-Reduce算法. 扩展了java的Collections类. Mahout最大的优点就是基于hadoop实现,把很多以前运行于单机上的算法,转化为了MapReduce模式,这样大大提升了算法可处理的数据量和处理性能.

国内的机器学习几个人

- - 丕子
转: http://blog.csdn.net/playoffs/article/details/7588597. 推荐几个机器学习和数据挖掘领域相关的中国大牛:. 李航:http://research.microsoft.com/en-us/people/hangli/,是MSRA Web Search and Mining Group高级研究员和主管,主要研究领域是信息检索,自然语言处理和统计学习.

Apache Mahout 0.8 发布,机器学习库

- - 开源中国社区最新新闻
Apache Mahout 0.8 发布了,Apache Mahout 是 Apache Software Foundation (ASF) 开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在 Apache 在许可下免费使用. 该项目已经发展到了它的最二个年头,目前只有一个公共发行版.

Ruby的机器学习项目

- - 阳志平的网志-技术类
作者是辉瑞公司的小牛,可惜烂尾了. 我在改啊改啊,可惜现在是商业项目,暂时不能放出改掉的部分. 对了,顺便做个小广告,去年组织翻译的一本小书:社会网络分析:方法与实践. 已经上市了,感兴趣的可以翻翻:. 社会网络分析:探索关系背后的科学与技术. treat:自然语言处理. 类似于igraph,也是桥接处理nlp.

机器学习该如何入门

- - CSDN博客综合推荐文章
  对于这个问题的解释,说实话我很有压力,因为在分享篇文章之前就有朋友告诉我,这个百度上一搜一大片,还需要你讲吗. 正如同一千个读者眼里有一千个林黛玉一样,我解释的当然是我个人自从读研到工作这么多年对机器学习的学习到应用过程的独特见解.   首先我们看下图了解一下机器学习在AI(Artificial Intelligence 人工智能)领域的地位.

[译] 理解机器学习技术

- - IT瘾-dev
第1讲 理解机器学习技术. 学完本模块的内容,读者将能够:. 讨论机器学习的技术和商业应用. 学完本讲的内容,读者将能够:. 解释各类机器学习方法和算法. “机器学习领域的突破,其价值10倍于微软. 你是否曾经为计算机能够下象棋或者机器人能够完成复杂任务而感到惊奇. 一旦你理解了机器如何学习和适应各种问题、提供合适的解决方案时,这些看上去很复杂的问题实际上相当简单.