mongodb性能测试

标签: mongodb 性能 测试 | 发表时间:2014-03-29 20:17 | 作者:shibin_1109
出处:http://www.iteye.com
1) Mongodb的非安全插入方式,在一开始插入性能是非常高的,但是在达到了两千万条数据之后性能骤减,这个时候恰巧是服务器24G内存基本占满的时候(随着测试的进行mongodb不断占据内存,一直到操作系统的内存全部占满),也就是说Mongodb的内存映射方式,使得数据全部在内存中的时候速度飞快,当部分数据需要换出到磁盘上之后,性能下降很厉害。(这个性能其实也不算太差,因为我们对三个列的数据做了索引,即使在内存满了之后每秒也能插入2MB的数据,在一开始更是每秒插入25MB数据)。Foursquare其实也是把Mongodb当作带持久化的内存数据库使用的,只是在查不到达到内存瓶颈的时候Sharding没处理好。

2) 对于批量插入功能,其实是一次提交一批数据,但是相比一次一条插入性能并没有提高多少,一来是因为网络带宽已经成为了瓶颈,二来我想写锁也会是一个原因。

3) 对于安全插入功能,相对来说比较稳定,不会波动很大,我想可能是因为安全插入是确保数据直接持久化到磁盘的,而不是插入内存就完事。

4) 对于一列条件的查询,性能一直比较稳定,别小看,每秒能有8000-9000的查询次数,每次返回10KB,相当于每秒查询80MB数据,而且数据库记录是2亿之后还能维持这个水平,性能惊人。

5) 对于二列条件返回小数据的查询,总体上性能会比4)好一点,可能返回的数据量小对性能提高比较大,但是相对来说性能波动也厉害一点,可能多了一个条件就多了一个从磁盘换页的机会。

6) 对于一列数据外加Sort和Skip的查询,在数据量大了之后性能明显就变差了(此时是索引数据量超过内存大小的时候,不知道是否有联系),我猜想是Skip比较消耗性能,不过和4)相比性能也不是差距特别大。

7) 对于返回大数据的查询,一秒瓶颈也有800次左右,也就是80M数据,这就进一步说明了在有索引的情况下,顺序查询和按条件搜索性能是相差无几的,这个时候是IO和网络的瓶颈。

8) 在整个过程中索引占的数据量已经占到了总数据量的相当大比例,在达到1亿4千万数据量的时候,光索引就可以占据整个内存,此时查询性能还是非常高,插入性能也不算太差,mongodb的性能确实很牛。

那么在来看看Sharding模式有什么亮点:

1) 非安全插入和单进程的配置一样,在内存满了之后性能急剧下降。安全插入性能和单进程相比慢不少,但是非常稳定。

2) 对于一个条件和两个条件的查询,性能都比较稳定,但条件查询性能相当于单进程的一半,但是在多条件下有的时候甚至会比单进程高一点。我想这可能是某些时候数据块位于两个Sharding,这样Mongos会并行在两个Sharding查询,然后在把数据进行合并汇总,由于查询返回的数据量小,网络不太可能成为瓶颈了,使得Sharding才有出头的机会。

3) 对于Order和Skip的查询,Sharding方式的差距就出来了,我想主要性能损失可能在Order,因为我们并没有按照排序字段作为Sharding的Key,使用的是_id作为Key,这样排序就比较难进行。

4) 对于返回大数据量的查询,Sharding方式其实和单进程差距不是很大,我想数据的转发可能是一个性能损耗的原因(虽然mongos位于打压机本机,但是数据始终是转手了一次)。

5) 对于磁盘空间的占用,两者其实是差不多的,其中的一些差距可能是因为多个进程都会多分配一点空间,加起来有的时候会比单进程多占用点磁盘(而那些占用比单进程少的地方其实是开始的编码错误,把实际数据大小和磁盘文件占用大小搞错了)。

测试最后的各个Sharding分布情况如下:

{
        "sharded" : true,
        "ns" : "testdb.test",
        "count" : 209766143,
        "size" : 214800530672,
        "avgObjSize" : 1024.0000011441311,
        "storageSize" : 222462757776,
        "nindexes" : 4,
        "nchunks" : 823,
        "shards" : {
                "shard0000" : {
                        "ns" : "testdb.test",
                        "count" : 69474248,
                        "size" : 71141630032,
                        "avgObjSize" : 1024.0000011515058,
                        "storageSize" : 74154252592,
                        "numExtents" : 65,
                        "nindexes" : 4,
                        "lastExtentSize" : 2146426864,
                        "paddingFactor" : 1,
                        "flags" : 1,
                        "totalIndexSize" : 11294125824,
                        "indexSizes" : {
                                "_id_" : 2928157632,
                                "Number_1" : 2832745408,
                                "Number1_1" : 2833974208,
                                "Date_-1" : 2699248576
                        },
                        "ok" : 1
                },
                "shard0001" : {
                        "ns" : "testdb.test",
                        "count" : 70446092,
                        "size" : 72136798288,
                        "avgObjSize" : 1024.00000113562,
                        "storageSize" : 74154252592,
                        "numExtents" : 65,
                        "nindexes" : 4,
                        "lastExtentSize" : 2146426864,
                        "paddingFactor" : 1,
                        "flags" : 1,
                        "totalIndexSize" : 11394068224,
                        "indexSizes" : {
                                "_id_" : 2969355200,
                                "Number_1" : 2826453952,
                                "Number1_1" : 2828403648,
                                "Date_-1" : 2769855424
                        },
                        "ok" : 1
                },
                "shard0002" : {
                        "ns" : "testdb.test",
                        "count" : 69845803,
                        "size" : 71522102352,
                        "avgObjSize" : 1024.00000114538,
                        "storageSize" : 74154252592,
                        "numExtents" : 65,
                        "nindexes" : 4,
                        "lastExtentSize" : 2146426864,
                        "paddingFactor" : 1,
                        "flags" : 1,
                        "totalIndexSize" : 11300515584,
                        "indexSizes" : {
                                "_id_" : 2930942912,
                                "Number_1" : 2835243968,
                                "Number1_1" : 2835907520,
                                "Date_-1" : 2698421184
                        },
                        "ok" : 1
                }
        },
        "ok" : 1
}


虽然在最后由于时间的关系,没有测到10亿级别的数据量,但是通过这些数据已经可以证明Mongodb的性能是多么强劲了。另外一个原因是,在很多时候可能数据只达到千万我们就会对库进行拆分,不会让一个库的索引非常庞大。在测试的过程中还发现几个问题需要值得注意:

1) 在数据量很大的情况下,对服务进行重启,那么服务启动的初始化阶段,虽然可以接受数据的查询和修改,但是此时性能很差,因为mongodb会不断把数据从磁盘换入内存,此时的IO压力非常大。

2) 在数据量很大的情况下,如果服务没有正常关闭,那么Mongodb启动修复数据库的时间非常可观,在1.8中退出的-dur貌似可以解决这个问题,据官方说对读取没影响,写入速度会稍稍降低,有空我也会再进行下测试。

3) 在使用Sharding的时候,Mongodb时不时会对数据拆分搬迁,这个时候性能下降很厉害,虽然从测试图中看不出(因为我每一次测试都会测试比较多的迭代次数),但是我在实际观察中可以发现,在搬迁数据的时候每秒插入性能可能会低到几百条。其实我觉得能手动切分数据库就手动切分或者手动做历史库,不要依赖这种自动化的Sharding,因为一开始数据就放到正确的位置比分隔再搬迁效率不知道高多少。个人认为Mongodb单数据库存储不超过1亿的数据比较合适,再大还是手动分库吧。

4) 对于数据的插入,如果使用多线程并不会带来性能的提高,反而还会下降一点性能(并且可以在http接口上看到,有大量的线程处于等待)。

5) 在整个测试过程中,批量插入的时候遇到过几次连接被远程计算机关闭的错误,怀疑是有的时候Mongodb不稳定关闭了连接,或是官方的C#客户端有BUG,但是也仅仅是在数据量特别大的时候遇到几次。

最新补充:在之后我又进行了几天测试,把测试数据量进一步加大到5亿,总磁盘占用超过500G,发现和2亿数据量相比,所有性能都差不多,只是测试6和测试7在超过2亿级别数据之后,每400万记录作为一个循环,上下波动30%的性能,非常有规律。

已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [mongodb 性能 测试] 推荐:

mongodb性能测试

- - 数据库 - ITeye博客
1) Mongodb的非安全插入方式,在一开始插入性能是非常高的,但是在达到了两千万条数据之后性能骤减,这个时候恰巧是服务器24G内存基本占满的时候(随着测试的进行mongodb不断占据内存,一直到操作系统的内存全部占满),也就是说Mongodb的内存映射方式,使得数据全部在内存中的时候速度飞快,当部分数据需要换出到磁盘上之后,性能下降很厉害.

Mongodb亿级数据量的性能测试

- - haohtml's blog
进行了一下Mongodb亿级数据量的性能测试,分别测试如下几个项目:.  (所有插入都是单线程进行,所有读取都是多线程进行). 1) 普通插入性能 (插入的数据每条大约在1KB左右). 2) 批量插入性能 (使用的是官方C#客户端的InsertBatch),这个测的是批量插入性能能有多少提高. 3) 安全插入功能 (确保插入成功,使用的是SafeMode.True开关),这个测的是安全插入性能会差多少.

记一次MongoDB性能问题

- Fstone - 火丁笔记
最近忙着把一个项目从MySQL迁移到MongoDB,在导入旧数据的过程中,遇到了些许波折,犯了不少错误,但同时也学到了不少知识,遂记录下来. 公司为这个项目专门配备了几台高性能务器,清一色的双路四核超线程CPU,外加32G内存,运维人员安装好MongoDB后,就交我手里了,我习惯于在使用新服务器前先看看相关日志,了解一下基本情况,当我浏览MongoDB日志时,发现一些警告信息:.

mongodb索引讲解与性能调优

- - haohtml's blog
mongodb索引规则基本上与传统的关系库一样,大部分优化MySQL/Oracle/SQLite索引的技巧也适用于mongodb. 当查询中用到某些条件时,可以对该键建立索引,以提高查询速度. 如果数据量很多且查询多于更新时,可以用索引提高查询的速度. a)         查询索引:. 查询索引很简单,比如说需要查询mailaccess数据库中的Mail collection上的索引时:.

Cassandra HBase和MongoDb性能比较

- - 数据库 - ITeye博客
这是一篇基于亚马逊云平台上对三个主流的. NoSQL数据库性能比较,在读写两个操作不同的组合情况下性能表现不同. 横坐标是吞吐量,纵坐标是延迟,这是一对矛盾,吞吐量越大,延迟越低,代表越好. 纯粹插入,Cassandra领先,见下图:. 2.WorkloadA: 读修改操作各占一半情况下的修改性能:MongoDB明显延迟增加,落败:.

[Cacti] mongodb性能监控实战

- - CSDN博客数据库推荐文章
          为了更好的使用mongodb,需要监控出mongodb的一些基础使用情况,比如Flush数、连接数、内存使用率、Index操作,Slave延迟等等,这些可以通过配置cacti监控mongodb的模板来完成. 1,在cacti界面导入模板 在计算机本地,下载此tgz包:http://mysql-cacti-templates.googlecode.com/files/better-cacti-templates-1.1.8.tar.gz.

开发高性能的MongoDB应用—浅谈MongoDB性能优化 - 吴纹羽

- - 博客园_首页
大数据时代的数据存储,非关系型数据库MongoDB(一).   “如何能让软件拥有更高的性能. ”,我想这是一个大部分开发者都思考过的问题. 性能往往决定了一个软件的质量,如果你开发的是一个互联网产品,那么你的产品性能将更加受到考验,因为你面对的是广大的 互联网用户,他们可不是那么有耐心的. 严重点说,页面的加载速度每增加一秒也许都会使你失去一部分用户,也就是说, 加载速度和用户量是成反比的.

SQL连接并发测试(mongodb连接测试引发的)

- Bloger - 博客园-首页原创精华区
       最近一直在搞mongodb 文件服务器大量文件并发上传测试,在官方文档发现mongo是线程安全的,支持单一连接下的并发操作. 印象ADO.NET 似乎不支持单一连接并发. (前两篇小记一直纠结mongodb吃内存导致并发文件上传变慢问题,经过这两天测试,发现文件并发上传越来越慢的瓶颈是磁盘的IO读写的瓶颈).

记一次MongoDB性能问题,附原理解析

- zffl - NoSQLFan
下面文章转载自火丁笔记,原作者描述了一次MongoDB数据迁移过程中遇到的性能问题及其解决方案,中间追查问题的方法和工具值得我们学习. 另外NoSQLFan还对作者略讲的问题产生原理进行了分析,希望对您有用. 最近忙着把一个项目从MySQL迁移到MongoDB,在导入旧数据的过程中,遇到了些许波折,犯了不少错误,但同时也学到了不少知识,遂记录下来.

MongoDB MapReduce 性能提升20倍的优化宝典

- - 数据库 - ITeye博客
自从MongoDB被越来越多的大型关键项目采用后,数据分析也成为了越来越重要的话题. 人们似乎已经厌倦了使用不同的软件来进行分析(这都利用到了Hadoop),因为这些方法往往需要大规模的数据传输,而这些成本相当昂贵. MongoDB提供了2种方式来对数据进行分析: Map Reduce(以下简称MR)和聚合框架(Aggregation Framework).