基于矩阵分解的推荐算法,简单入门 - kobeshow

标签: 矩阵分解 推荐算法 kobeshow | 发表时间:2014-04-08 13:51 | 作者:kobeshow
出处:
       本文将要讨论基于矩阵分解的推荐算法,这一类型的算法通常会有很高的预测精度,也活跃于各大推荐系统竞赛上面,前段时间的百度电影推荐最终结果的前10名貌似都是把矩阵分解作为一个单模型,最后各种ensemble,不知道正在进行的阿里推荐比赛( http://102.alibaba.com/competition/addDiscovery/index.htm),会不会惊喜出现。。。。好了,闲话不扯了,本文打算写一篇该类型推荐算法的入门篇
 
目录
一,基于矩阵分解的推荐算法相关理论介绍
二,C++代码实现
三,总结跟展望一下
四,后续计划
 
一,基于矩阵分解的推荐算法相关理论介绍
      我们知道,要做推荐系统,最基本的一个数据就是,用户-物品的评分矩阵,如下图1所示
 
图1
        矩阵中,描述了5个用户(U1,U2,U3,U4 ,U5)对4个物品(D1,D2,D3,D4)的评分(1-5分),- 表示没有评分,现在目的是把没有评分的 给预测出来,然后按预测的分数高低,给用户进行推荐。
       如何预测缺失的评分呢?对于缺失的评分,可以转化为基于机器学习的回归问题,也就是连续值的预测,对于矩阵分解有如下式子,R是类似图1的评分矩阵,假设N*M维(N表示行数,M表示列数),可以分解为P跟Q矩阵,其中P矩阵维度N*K,P矩阵维度K*M。
 
式子1
       对于P,Q矩阵的解释,直观上,P矩阵是N个用户对K个主题的关系,Q矩阵是K个主题跟M个物品的关系,至于K个主题具体是什么,在算法里面K是一个参数,需要调节的,通常10~100之间。
式子2
       对于式子2的左边项,表示的是R^ 第i行,第j列的元素值,对于如何衡量,我们分解的好坏呢,式子3,给出了衡量标准,也就是损失函数,平方项损失,最后的目标,就是每一个元素(非缺失值)的e(i,j)的总和 最小
 
 
式子3
         OK,目前现在评分矩阵有了,损失函数也有了,该优化算法登场了,下面式子4是,基于梯度下降的优化算法,p,q里面的每个元素的更新方式
 
 
式子4
           然而,机器学习算法都喜欢加一个正则项,这里面对式子3稍作修改,得到如下式子5,beita 是正则参数
 
式子5
         相应的p,q矩阵各个元素的更新也换成了如下方式
 
式子6
        至此,P,Q矩阵元素求出来了之后,计算某个用户i对某个物品j的评分计算就是p(i,1)*q(1,j)+p(i,2)*q(2,j)+....+p(i,k)*q(k,j)。
 
二,C++代码实现
       第一部分已经给出了,基于矩阵分解的推荐算法的整个流程,下面是该算法编程实现(C/C++),代码加一些注释有助于理解
1 /**
2
3 评分矩阵R如下
4
5 D1 D2 D3 D4
6
7 U1 5 3 - 1
8
9 U2 4 - - 1
10
11 U3 1 1 - 5
12
13 U4 1 - - 4
14
15 U5 - 1 5 4
16
17 ***/
18
19 #include<iostream>
20
21 #include<cstdio>
22
23 #include<cstdlib>
24
25 #include<cmath>
26
27 using namespace std;
28
29
30
31 void matrix_factorization(double *R,double *P,double *Q,int N,int M,int K,int steps=5000,float alpha=0.0002,float beta=0.02)
32
33 {
34
35 for(int step =0;step<steps;++step)
36
37 {
38
39 for(int i=0;i<N;++i)
40
41 {
42
43 for(int j=0;j<M;++j)
44
45 {
46
47 if(R[i*M+j]>0)
48
49 {
50
51 //这里面的error 就是公式6里面的e(i,j)
52
53 double error = R[i*M+j];
54
55 for(int k=0;k<K;++k)
56
57 error -= P[i*K+k]*Q[k*M+j];
58
59
60
61 //更新公式6
62
63 for(int k=0;k<K;++k)
64
65 {
66
67 P[i*K+k] += alpha * (2 * error * Q[k*M+j] - beta * P[i*K+k]);
68
69 Q[k*M+j] += alpha * (2 * error * P[i*K+k] - beta * Q[k*M+j]);
70
71 }
72
73 }
74
75 }
76
77 }
78
79 double loss=0;
80
81 //计算每一次迭代后的,loss大小,也就是原来R矩阵里面每一个非缺失值跟预测值的平方损失
82
83 for(int i=0;i<N;++i)
84
85 {
86
87 for(int j=0;j<M;++j)
88
89 {
90
91 if(R[i*M+j]>0)
92
93 {
94
95 double error = 0;
96
97 for(int k=0;k<K;++k)
98
99 error += P[i*K+k]*Q[k*M+j];
100
101 loss += pow(R[i*M+j]-error,2);
102
103 for(int k=0;k<K;++k)
104
105 loss += (beta/2) * (pow(P[i*K+k],2) + pow(Q[k*M+j],2));
106
107 }
108
109 }
110
111 }
112
113 if(loss<0.001)
114
115 break;
116
117 if (step%1000==0)
118
119 cout<<"loss:"<<loss<<endl;
120
121 }
122
123 }
124
125
126
127 int main(int argc,char ** argv)
128
129 {
130
131 int N=5; //用户数
132
133 int M=4; //物品数
134
135 int K=2; //主题个数
136
137 double *R=new double[N*M];
138
139 double *P=new double[N*K];
140
141 double *Q=new double[M*K];
142
143 R[0]=5,R[1]=3,R[2]=0,R[3]=1,R[4]=4,R[5]=0,R[6]=0,R[7]=1,R[8]=1,R[9]=1;
144
145 R[10]=0,R[11]=5,R[12]=1,R[13]=0,R[14]=0,R[15]=4,R[16]=0,R[17]=1,R[18]=5,R[19]=4;
146
147
148
149 cout<< "R矩阵" << endl;
150
151 for(int i=0;i<N;++i)
152
153 {
154
155 for(int j=0;j<M;++j)
156
157 cout<< R[i*M+j]<<',';
158
159 cout<<endl;
160
161 }
162
163
164
165 //初始化P,Q矩阵,这里简化了,通常也可以对服从正态分布的数据进行随机数生成
166
167 srand(1);
168
169 for(int i=0;i<N;++i)
170
171 for(int j=0;j<K;++j)
172
173 P[i*K+j]=rand()%9;
174
175
176
177 for(int i=0;i<K;++i)
178
179 for(int j=0;j<M;++j)
180
181 Q[i*M+j]=rand()%9;
182
183 cout <<"矩阵分解 开始" << endl;
184
185 matrix_factorization(R,P,Q,N,M,K);
186
187 cout <<"矩阵分解 结束" << endl;
188
189
190
191 cout<< "重构出来的R矩阵" << endl;
192
193 for(int i=0;i<N;++i)
194
195 {
196
197 for(int j=0;j<M;++j)
198
199 {
200
201 double temp=0;
202
203 for (int k=0;k<K;++k)
204
205 temp+=P[i*K+k]*Q[k*M+j];
206
207 cout<<temp<<',';
208
209 }
210
211 cout<<endl;
212
213 }
214
215 free(P),free(Q),free(R);
216
217 return 0;
218
219 }

 

   执行的结果如下图所示,

 
三,展望
       前两个部分,已经简单的介绍了最基本的基于矩阵分解的推荐算法,基于该算法的一些变种,类似svd++,pmf等,都是针对某一些特定的数据场景进行的一些改进,那有没有统一的框架来整合这些场景呢??前两年在KDDcup大赛,大出风头的Factorization Machine(FM),其中FM的核心理论在于用Factorization来刻画feature跟feature之间的关系,如下面公式
 
       <Vi,Vj>正是刻画了xi,xj的关系,上面式子可以理解为FM=SVM+Factorization Methods,后续准备开一篇博文,来阐释FM模型,跟其作者开源的LibFM工具箱,最后贴一张八卦的图,图中讲的是bickson(graphlab/graphchi的里面推荐工具包的作者),在一次会议上,对steffen(libfm的作者)问的一个问题
 
四,后续计划
   1),介绍FM模型
   2),LibFM源码剖析
 
参考资料
   1),bickson.blogspot.com/2012/08/steffen-rendle-libfm.html‎
   2),S. Rendle.Factorization machines.In Proceedings of the 10th IEEE International Conference on Data Mining. IEEE Computer Society,  2010.

本文链接: 基于矩阵分解的推荐算法,简单入门,转载请注明。

相关 [矩阵分解 推荐算法 kobeshow] 推荐:

基于矩阵分解的推荐算法,简单入门 - kobeshow

- - 博客园_首页
       本文将要讨论基于矩阵分解的推荐算法,这一类型的算法通常会有很高的预测精度,也活跃于各大推荐系统竞赛上面,前段时间的百度电影推荐最终结果的前10名貌似都是把矩阵分解作为一个单模型,最后各种ensemble,不知道正在进行的阿里推荐比赛( http://102.alibaba.com/competition/addDiscovery/index.htm),会不会惊喜出现.

推荐算法之矩阵分解

- - 标点符
推荐领域的人一般都会听说过十年前 Netflix Prize 的比赛,随着Netflix Prize推荐比赛的成功举办,近年来隐语义模型(Latent Factor MOdel,LFM)受到越来越多的关注. 隐语义模型最早在文本挖掘领域被提出,用于寻找文本的隐含语义,相关的模型常见的有潜在语义分析(Latent Semantic Analysis,LSA)、LDA(Latent Dirichlet Allocation)的主题模型(Topic Model)、矩阵分解(Matrix Factorization)等等.

矩阵分解的Jungle

- SuperLucky - 增强视觉 | 计算机视觉 增强现实
美帝的法国貌似是美法混血的有心人士(此有心人士长期从事航天飞机研究. )收集了市面上的矩阵分解的几乎所有算法和应用,由于源地址在某神秘物质之外,特转载过来,源地址. Matrix Decompositions has a long history and generally centers around a set of known factorizations such as LU, QR, SVD and eigendecompositions.

矩阵分解在推荐系统中的应用(转)

- -
本文将简单介绍下最近学习到的矩阵分解方法. 开始觉得这种方法很神奇很数学,而且在实际使用的时候也非常好用. 但最近读了Yehuda大神的paper之后,觉得这种方法比较猥琐. 其实,矩阵分解的核心是将一个非常稀疏的评分矩阵分解为两个矩阵,一个表示user的特性,一个表示item的特性,将两个矩阵中各取一行和一列向量做内积就可以得到对应评分.

解析移动游戏运营数据分析指标 - kobeshow

- - 博客园_首页
       在平常的工作中,经常会有一些马虎的数据分析师,接到业务方提到的需求后,大致扫一遍然后就吭叽吭叽做起来,最后出的分析结果报告交给业务方后没多久就打回来,说不是他想要结果,仔细一讨论发现双方的指标定义不一致,从而导致了一顿白忙活,造成“十动仍拒”的下场. 所以指标定义的清晰性是开始分析工作的前提.

社会化推荐算法

- - CSDN博客云计算推荐文章
本文是论文《一种结合推荐对象间关联关系的社会化推荐算法》(以下简称论文)的笔记(下). 该论文提出的算法是以PMF为框架基础的. 因而若对PMF不太了解的话,可以参考我的 上一篇文章脑补一下,当然,那篇文章只是概述,详细了解PMF还需要阅读初始论文,但读完那篇文章后,对本文的理解应该没有问题. 所谓社会化推荐算法,是将社交网络的特性加入到推荐系统中来.

常用推荐算法

- - 互联网 - ITeye博客
       在推荐系统简介中,我们给出了推荐系统的一般框架. 很明显,推荐方法是整个推荐系统中最核心、最关键的部分,很大程度上决定了推荐系统性能的优劣. 目前,主要的推荐方法包括:基于内容推荐、协同过滤推荐、基于关联规则推荐、基于效用推荐、基于知识推荐和组合推荐. 基 于内容的推荐(Content-based Recommendation)是信息过滤技术的延续与发展,它是建立在项目的内容信息上作出推荐的,而不需要依据用户对项目的评价意见,更多地需要用机 器学习的方法从关于内容的特征描述的事例中得到用户的兴趣资料.

Mahout: SVDRecommender SVD推荐算法

- -

[转]Mahout推荐算法基础

- - 小鸥的博客
Mahout推荐算法分为以下几大类. 2.相近的用户定义与数量. 2.用户数较少时计算速度快. 1.基于item的相似度. 1.item较少时就算速度更快. 2.当item的外部概念易于理解和获得是非常有用. 1基于SlopeOne算法(打分差异规则). 当item数目十分少了也很有效. 需要限制diffs的存储数目否则内存增长太快.

推荐算法Slope One初探

- - 标点符
Slope One 算法是由 Daniel Lemire 教授在 2005 年提出的一个 Item-Based 推荐算法.  Slope One 算法试图同时满足这样的的 5 个目标: . 易于实现和维护:普通工程师可以轻松解释所有的聚合数据,并且算法易于实现和测试. 运行时可更新的:新增一个评分项,应该对预测结果即时产生影响.