推荐算法之基于用户的协同过滤算法

标签: 推荐算法 用户 协同过滤 | 发表时间:2014-07-07 07:41 | 作者:wangyuquanliuli
出处:http://blog.csdn.net

协同过滤是推荐算法中最基本的算法,主要分为基于用户的协同过滤算法和基于物品的协同过滤算法。


这篇文章主要介绍基于用户的协同过滤算法,简单来说,要给用户u作推荐,那么只要找出那些和u之前的行为类似的用户,即和u比较像的用户,把他们的行为推荐给用户u即可。所以基于用户的系统过滤算法包括两个步骤:1)找到和目标用户兴趣相似的用户集合  2)找到这个集合中的用户喜欢的,且目标用户没有听说过的物品推荐给目标用户。


第一步的关键点在于计算用户之间的相似度,相似度一般通过Jaccard公式或者余弦相似度即可求得,及计算共有行为所占的比重(具体式子google就行,csdn插入公式不方便。。。),所以目前而言,计算用户相似度的复杂度是O(N*N), N为用户数量,在用户数比较大的网站中不实用,比如亚马逊用户数量肯定N>100000,那么这样的复杂度是不可接受的。 

第一步时间复杂度的改进方法:因为很多用户间其实相似度是为0的,如果看成是一个N*N的矩阵的话,肯定是个稀疏矩阵,那么我们其实没有必要浪费计算量在这些0上。我们可以建立物品到用户的倒查表,及可以根据物品找到所有对该物品有过行为的用户,然后遍历各物品,对一个物品然后找到对该物品有过行为的用户,然后计算这些用户间的行为相似度(共有行为+1,同时计算这些用户的行为数),最后计算两用户间的公有行为占各自行为的比重。

第一步计算相似度的改进方法:举个例子:如果两人都买过《新华辞典》,并不能说明这两人想像,因为这本书基本上人人都会买,而如果这两人都买过《机器学习》,那么我们可以肯定,这两人在这方面有相同的兴趣爱好,也就是说,越是对冷门物品有同样的行为,就越说明用户的相似性,即在计算用户相似性的时候,需要降低热门物品的影响(通过计算流行度来实现,然后用1/N(i)来计算公共行为比重,N(i)表示流行度,这样,流行度高的物品所占比重就比较低)


第二步则比较简单,选出K个和用户u最相似的用户,把他们喜欢过的物品并且用户u没有喜欢过的物品推荐给u即可。这里面K的选择非常重要。K越大,推荐的结果就越热门,流行度就越高,同时覆盖率越低,因为基本推荐的都是流行的物品

作者:wangyuquanliuli 发表于2014-7-6 23:41:28 原文链接
阅读:88 评论:0 查看评论

相关 [推荐算法 用户 协同过滤] 推荐:

推荐算法之基于用户的协同过滤算法

- - CSDN博客综合推荐文章
协同过滤是推荐算法中最基本的算法,主要分为基于用户的协同过滤算法和基于物品的协同过滤算法. 这篇文章主要介绍基于用户的协同过滤算法,简单来说,要给用户u作推荐,那么只要找出那些和u之前的行为类似的用户,即和u比较像的用户,把他们的行为推荐给用户u即可. 所以基于用户的系统过滤算法包括两个步骤:1)找到和目标用户兴趣相似的用户集合  2)找到这个集合中的用户喜欢的,且目标用户没有听说过的物品推荐给目标用户.

基于综合兴趣度的协同过滤推荐算法

- - IT技术博客大学习
标签:   兴趣   协同过滤   推荐. 电子商务推荐系统最大的优点在于它能收集用户的兴趣资料和个人信息,根据用户兴趣偏好主动为用户做出个性化推荐. 推荐技术指的是如何找出用户感兴趣的商品并列出推荐清单,在用户信息获取差别不大的情况下,推荐技术成为决定一个推荐系统性能的关键,其中推荐算法是推荐技术的核心[1].

推荐算法之协同过滤实战

- - 互联网 - ITeye博客
协同过滤(Collective Filtering)可以说是推荐系统的标配算法. 在谈推荐必谈协同的今天,我们也来谈一谈基于KNN的协同过滤在实际的推荐应用中的一些心得体会. 我们首先从协同过滤的两个假设聊起. 用户一般会喜欢与自己喜欢物品相似的物品. 用户一般会喜欢与自己相似的其他用户喜欢的物品.

协同过滤推荐算法的原理及实现

- - 蓝鲸的网站分析笔记
协同过滤推荐算法是诞生最早,并且较为著名的推荐算法. 算法通过对用户历史行为数据的挖掘发现用户的偏好,基于不同的偏好对用户进行群组划分并推荐品味相似的商品. 协同过滤推荐算法分为两类,分别是基于用户的协同过滤算法(user-based collaboratIve filtering),和基于物品的协同过滤算法(item-based collaborative filtering).

[推荐算法]ItemCF,基于物品的协同过滤算法 - 在路上的学习者 - CSDN博客

- -
ItemCF:ItemCollaborationFilter,基于物品的协同过滤. 算法核心思想:给用户推荐那些和他们之前喜欢的物品相似的物品. 比如,用户A之前买过《数据挖掘导论》,该算法会根据此行为给你推荐《机器学习》,但是ItemCF算法并不利用物品的内容属性计算物品之间的相似度,它主要通过分析用户的行为记录计算物品之间的相似度.

【推荐系统】协同过滤之基于用户的最近邻推荐

- - CSDN博客互联网推荐文章
协同过滤(collaborative filtering)的核心思想:利用其他用户的行为来预测当前用户. 协同过滤算法是推荐系统中最基本的,同时在业界广为使用. 根据使用的方法不同,可以分为基于用户(user-based)、基于物品(item-based)的最近邻推荐. 基于用户的最近邻推荐的主要思想与 kNN有点相似:对于一个给定的评分集,找出与当前用户u口味相近的k个用户;然后,对于用户u没有见过的物品p,利用k个近邻对p进行预测评分.

协同过滤算法

- - CSDN博客推荐文章
今天要讲的主要内容是 协同过滤,即Collaborative Filtering,简称 CF.    关于协同过滤的一个最经典的例子就是看电影,有时候不知道哪一部电影是我们喜欢的或者评分比较高的,那.    么通常的做法就是问问周围的朋友,看看最近有什么好的电影推荐. 在问的时候,都习惯于问跟自己口味差不.

协同过滤 Collaborative Filtering

- - IT技术博客大学习
   协同过滤算法是推荐系统中最古老,也是最简单高效的推荐算法. 简单说协同过滤就是根据以往的用户产生的数据分析,对用户的新行为进行匹配分析来给用户推荐用户最有可能感兴趣的内容.    协同过滤算法是为了解决 长尾现象,也就是说推荐系统是为了解决长尾现象而诞生的. 因为在之前在有限的空间(如:书店的书架、服装店的衣架、商店的货架、网页的展示区域)只能摆有限的物品进行展示,造成大量的非热门物品很难进入人们的视野,也就无法产生任何价值.

36氪领读 | 内容推荐算法,抢夺用户时间的利器

- - 36氪
36氪专门为读书设立了【36氪领读】栏目,筛选一些值得读的书,并提供一些书摘. 希望你手边有一本称心的书,让读书这场运动继续下去. 伴随着国民总时间概念的兴起,互联网巨头纷纷布局内容行业,以争夺用户时间. 作为内容生产者主力的各类自媒体也如雨后春笋般涌现,在内容创作、内容变现等方面做得风生水起. 通过算法实现的推荐技术基于用户历史数据和行为,推测用户意图,推荐合适的商品和内容给终端用户,显著提高了用户的点击率和留存率.