你可能并不需要消息队列

标签: 需要 消息队列 | 发表时间:2014-07-08 07:54 | 作者:
出处:http://it.deepinmind.com

我是一个极简主义者,我不喜欢过早或者没必要地让软件复杂化。而往软件系统中添加组件就是严重增加复杂性的一种做法。我们来拿消息队列举个例子。

消息队列是一个能让你获得容错性,分布式,解耦等架构能力的系统。纸上谈兵的话,它看起来还不错。

或许消息列队在你的应用中有不少适用的场景。你可以看下这篇关于消息队列优点的 文章,看看到底有哪些合适的场景。但可不要因为说"能解耦那太好了”就轻易使用它。我们来看一个例子——你希望你的邮件发送和订单处理互相解耦。因此你发送一个消息到消息队列里,然后邮件处理系统取出这个消息并发送邮件。那你在一个独立的单classpath的应用中怎么实现呢?让你的订单处理服务依赖于一个邮件服务,然后调用sendEmail()方法,而不是sendToMQ()方法。如果你使用了消息队列,你需要定义一个两个系统都能识别的消息格式 ;如果你不使用消息队列,那么你得定义一个方法签名。它们有什么本质的区别吗?其实没有。

不过你可能还有别的消费者想要对某个指定的消息进行额外的处理?这的确是可能发生的,而并不只是针对我们这里说到的这个项目而已。尽管确有可能,但相比添加另一个方法调用而言,它可能并不值当。耦合?是的。不过这个耦合并没有什么不方便的。

那我应该如何处理峰值流量?你可以通过消息队列将请求放到一个持久化队列中,然后再一并处理它们。这是一个非常有用的特性,不过它也受限于几个 因素——你的请求是在UI后台处理,还是需要即时响应?serlvet容器的线程池某种程度上可以当作是一个队列,用户最终会拿到响应,但是得需要等待(如果线程的超时时间过短的话,请求可能会丢失)。你可以使用一个内存队列来存储那些较重的请求(得在UI后台进行处理)。不过注意了,你的队列并不是默认高可用的。比如说,如果一个消息队列节点挂掉了,你的消息就丢失了。因此,不去使用应用节点内的内存队列,而是去使用一个消息队列,这可能并没有什么优势。

消息队列使得我们可以进行异步处理——这的确是个有用的特性。你不希望在用户等待的时候做一些很重的操作。不过你也可以使用一个内存队列,或者简单地启动一个新的线程(比如Spring的@Async注解)。这样又有另一个问题——如果消息丢失的话是否有问题?如果你应用处理请求的节点挂了,你可以进行恢复吗?你会发现这事会经常发生,如果不保证所有消息都处理到的话,很难保证功能的正确性。因此,仅将较重的调用进行异步处理是比较可取的。

把消息放到队列以便让另一个组件来进行处理,对于这个场景,如果消息丢失是无法接受的 ,这也有一个很简单的解决方案——数据库。你可以把一条processed=false的数据存储到数据库中。然后再运行一个调度作业,将所有未处理的记录挑选出来,异步地进行处理。当处理完成的时候,将标记设为true。我经常用这个方法,包括在一些大型的线上系统中,它也工作得挺好的。

这样你还能不断地对你的应用节点进行扩展,只要它们的内存中没有任何的持久化状态的话。不管你是否使用了消息队列都可以(临时的内存处理队列并不属于持久化状态)。

为什么我要给经常用到的消息队列提供一些备选方案?因为如果你由于不恰当的原因选择了它,那么消息队列可能会成为一个负担。它们并非如想像中那样容易使用。首先,它有一个学习曲线。一般来说,你集成的组件切分得越多,就越容易出现问题。其次,还有一个设置及配置的成本。比如说,当消息队列需要在一个集群中运行的话,比如说多个数据中心,那么这就变得复杂了。高可用性并不是上来就有的——默认它是不会打开的。还有就是你的应用节点如何连接到消息队列?通过一个刷新的连接池,或者使用短生命周期的DNS记录,还是通过一个负载均衡器?你的队列可能还有许多配置项,大小是多少,行为是怎样的(消费者需不需要确认接受,要不要通知处理失败,多个消费者能够取到同一个消息吗,消息有没有TTL,等等)同时还有网络及消息传递的开销,尤其是现在大家都喜欢用XML或者JSON来传输消息。如果你过度地使用了消息队列,那么它会增加你系统的延时。最后一点,但并不是最次要的——如果出现问题的话,使用消息队列会让问题跟踪变得异常困难。你没法在IDE中看到所谓的调用层次,因为一旦你发送消息到队列里了,你就得自己去查找它在哪里处理的了。这可不是听起来那么简单的。你看到了吧,它会给你增加许多的复杂性,以及许多需要注意的东西。

通常而言,在某些上下文中,消息队列还是非常有用的。当它们的确适合的话,我也会在项目中使用它们——比方说,我们不想丢失消息,但又希望能快速地进行处理。我也见过它在一些不太常见的场景中使用的情况,比如说只有一个应用节点来进行消费,不管是哪个节点投递过来的消息。你还可以看下stackoverflow上的 这个问题。还有一些使用场景就是,或许你的确需要进行多语言间的通信,又或者你的数据流已经过于复杂了,不使用新的消息消费者而是增加新方法调用的话代价会很大。

我想说的是那句老掉牙的真理“杀鸡焉用牛刀”。如果你不是很确定已经没有别的更容易管理和维护的方法,一定要使用消息队列的话,最好不要使用它。不要因为”万一它有用呢“而去用它——只有你确实觉得需要的话再去使用。因为很有可能,就像这里说到的这个项目一样,消息队列其实是没有必要的。

原创文章转载请注明出处: 你可能并不需要消息队列

英文原文链接

相关 [需要 消息队列] 推荐:

你可能并不需要消息队列

- - Java译站
我是一个极简主义者,我不喜欢过早或者没必要地让软件复杂化. 而往软件系统中添加组件就是严重增加复杂性的一种做法. 消息队列是一个能让你获得容错性,分布式,解耦等架构能力的系统. 或许消息列队在你的应用中有不少适用的场景. 你可以看下这篇关于消息队列优点的 文章,看看到底有哪些合适的场景. 但可不要因为说"能解耦那太好了”就轻易使用它.

快速的消息队列 SquirrelMQ

- Le - 开源中国社区最新软件
SquirrelMQ是一个快速的消息队列.   SquirrelMQ VS Redis 入队列: SquirrelMQ:100万条数据,105S,内存使用84MB. Redis:100万条数据,156S,内存使用127MB.   出队列:   SquirrelMQ:100万条数据,230S. Redis:100万条数据,163S.

Feed消息队列架构分析

- - Tim[后端技术]
最近一两年,大部分系统的数据流由基于日志的离线处理方式转变成实时的流式处理方式,并逐渐形成几种通用的使用方式,以下介绍微博的消息队列体系. 当前的主要消息队列分成如图3部分. 1、feed信息流主流程处理,图中中间的流程,通过相关MQ worker将数据写入cache、Redis及MySQL,以便用户浏览信息流.

redis作为消息队列的使用

- - ITeye博客
在redis支持的数据结构中,有一个是集合list. 对List的操作常见的有lpush  lrange等. 在这种常见的操作时,我们是把集合当做典型意义上的‘集合’来使用的. 往往容易被忽视的是List作为“队列”的使用情况. 反编译redis的jar包,会发现:.  pop意为“弹”,是队列里的取出元素.

高可用消息队列框架ZBUS

- - 企业架构 - ITeye博客
我们在日常开发中可以需要用到消息队列 当然我们完全可以自己写一个生产者-消费者框架 但是高可用性、实时性已经大量数据堆积时候就显得问题捉襟见肘了下面推荐的框架在我时间项目中和测试中都是非常不错那么他是什么框架呢.    zbus git地址. http://git.oschina.net/rushmore/zbus ZBUS=MQ+RPC 服务总线 1)支持消息队列, 发布订阅, RPC, 交易系统队列适配 2)亿级消息堆积能力、支持HA高可用 3)无依赖单个Jar包 ~300K 4)丰富的API--JAVA/C/C++/C#/Python/Node.JS多语言接入,支持HTTP等协议长连接入.

[转]消息队列的两种模式

- -
Java消息服务(Java Message Service,JMS)应用程序接口是一个Java平台中关于面向消息中间件(MOM)的API,用于在两个应用程序之间,或分布式系统中发送消息,进行异步通信. 点对点与发布订阅最初是由JMS定义的. 这两种模式主要区别或解决的问题就是发送到队列的消息能否重复消费(多订阅).

消息队列设计精要

- - 美团点评技术团队
消息队列已经逐渐成为企业IT系统内部通信的核心手段. 它具有低耦合、可靠投递、广播、流量控制、最终一致性等一系列功能,成为异步RPC的主要手段之一. 当今市面上有很多主流的消息中间件,如老牌的ActiveMQ、RabbitMQ,炙手可热的Kafka,阿里巴巴自主开发的Notify、MetaQ、RocketMQ等.

深入浅出 消息队列 ActiveMQ

- - 编程语言 - ITeye博客
ActiveMQ 是Apache出品,最流行的、功能强大的. 即时通讯和集成模式的开源服务器. ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现. 提供客户端支持跨语言和协议,带有易于在充分支持JMS 1.1和1.4使用J2EE企业集成模式和许多先进的功能.

延迟消息队列设计

- -
由于Kafka不支持延迟消息,而目前公司技术栈中消息中间件使用的是Kafka,业务方希望使用RocketMQ满足延迟消息场景,但如果仅仅只是需要延迟消息功能而引入多一套消息中间件,这会增加运维与维护成本. 在此背景下,我们希望通过扩展Kafka客户端提供延迟消息的支持. 本篇将介绍四种延迟消息实现方案的原理,以及分析其优缺点.

java多线程消息队列的实现

- - 编程语言 - ITeye博客
2、定义队列缓冲池最大消息数,如果达到该值,那么队列检入将等待检出低于该值时继续进行. 3、定义检出线程,如果队列缓冲池没有消息,那么检出线程会线程等待中. if(size==0){ //队列缓存池没有消息,等待. if(isIpLock(queueStr)){//假若这个是一个多应用的分布式系统,那么这个判断应该是分布式锁,这里说的锁不是线程停止,而是跳过该消息,滞后处理.