heipark------hadoop性能调优笔记

标签: heipark hadoop 性能调优 | 发表时间:2014-09-07 23:29 | 作者:这些年
出处:http://www.iteye.com

Hadoop调优

mapred.tasktracker.map.tasks.maximum

 

官方解释:The maximum number of map tasks that will be run  simultaneously by a task tracker.

 

我的理解:一个tasktracker最多可以同时运行的map任务数量

 

默认值:2

 

优化值:mapred.tasktracker.map.tasks.maximum = cpu数量

 

cpu数量 = 服务器CPU总核数 / 每个CPU的核数
服务器CPU总核数 = more /proc/cpuinfo | grep 'processor' | wc -l
每个CPU的核数 = more /proc/cpuinfo | grep 'cpu cores'

mapred.map.tasks

官方的解释:The default number of map tasks per job

 

我的解释:一个Job会使用task tracker的map任务槽数量,这个值 ≤ mapred.tasktracker.map.tasks.maximum

 

默认值:2

 

优化值:

  1. CPU数量 (我们目前的实践值)
  2. (CPU数量 > 2) ? (CPU数量 * 0.75) : 1  (mapr的官方建议)

 

注意:map任务的数量是由input spilit决定的,和上面两个参数无关

mapred.tasktracker.reduce.tasks.maximum

 

官方解释:The maximum number of reduce tasks that will be run  simultaneously by a task tracker.

 

我的理解:一个task tracker最多可以同时运行的reduce任务数量

 

默认值:2

 

优化值: (CPU数量 > 2) ? (CPU数量 * 0.50): 1 (mapr的官方建议)

mapred.reduce.tasks

 

官方解释:The default number of reduce tasks per job. Typically set to 99%  of the cluster's reduce capacity, so that if a node fails the reduces can  still be executed in a single wave.

 

我的理解:一个Job会使用task tracker的reduce任务槽数量

 

默认值:1

 

优化值:

  • 0.95 * mapred.tasktracker.tasks.maximum

理由:启用95%的reduce任务槽运行task, recude task运行一轮就可以完成。剩余5%的任务槽永远失败任务,重新执行

  • 1.75 * mapred.tasktracker.tasks.maximum

理由:因为reduce task数量超过reduce槽数,所以需要两轮才能完成所有reduce task。具体快的原理我没有完全理解,上原文:

 

     hadoop官方wiki: 写道

At 1.75 the faster nodes will finish their first round of reduces and launch a second round of reduces doing a much better job of load balancing.

 

环境变量

disable ipv6配置,修改bin/hadoop,添加下行:

 

 

HADOOP_OPTS="$HADOOP_OPTS -Djava.net.preferIPv4Stack=true"

 

Hive调优:

 

mapred.reduce.tasks

 

官方 写道
The default number of reduce tasks per job. Typically set
to a prime close to the number of available hosts. Ignored when
mapred.job.tracker is "local". Hadoop set this to 1 by default, whereas hive uses -1 as its default value.
By setting this property to -1, Hive will automatically figure out what should be the number of reducers.

 

 

我的理解
tasktracker执行hive job的reduce任务数,设置为"-1"hive将自动设置该值,策略如下:

1. hive.exec.reducers.bytes.per.reducer(默认为1GB)
2. hive.exec.reducers.max(默认为999)

mapred.reduce.tasks = min ( 参数2,总输入数据量/参数1 )

 

默认值:-1

 

优化值:显式设置为Hadoop配置中mapred.reduce.tasks值,参考上文。

 

参考资料:

 




 

http://wiki.apache.org/hadoop/HowManyMapsAndReduces

http://www.mapr.com/doc/display/MapR/mapred-site.xml

http://hi.baidu.com/dtzw/blog/item/5b64880aaf057d33b0351db4.html

http://www.tbdata.org/archives/622

http://developer.yahoo.com/hadoop/tutorial/module7.html

 

 



已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [heipark hadoop 性能调优] 推荐:

heipark------hadoop性能调优笔记

- - 开源软件 - ITeye博客
官方解释:The maximum number of map tasks that will be run  simultaneously by a task tracker.. 我的理解:一个tasktracker最多可以同时运行的map任务数量. 优化值:mapred.tasktracker.map.tasks.maximum = cpu数量.

Hadoop性能调优

- - 开源软件 - ITeye博客
是否对任务进行profiling,调用java内置的profile功能,打出相关性能信息. 对几个map或reduce进行profiling. 非常影响速度,建议在小数据量上尝试. 1表示不reuse,-1表示无限reuse,其他数值表示每个jvm reuse次数. reuse的时候,map结束时不会释放内存.

Hadoop性能调优--用户角度

- - CSDN博客云计算推荐文章
hadoop为用户作业提供了多种可配置的参数,以允许用户根据作业特点调整这些值. (1)设置Combiner. 如果是一大批MR程序,如果可以设置一个Combiner,Combiner可减少Map Task中间输出结果,从而减少各个Reduce Task的远程拷贝数据. 量,最终表现为Map Task和Reduce Task执行时间缩短.

HBase性能调优

- - 学着站在巨人的肩膀上
我们经常看到一些文章吹嘘某产品如何如何快,如何如何强,而自己测试时却不如描述的一些数据. 其实原因可能在于你还不是真正理解其内部结构,对于其性能调优方法不够了解. 本文转自TaoBao的Ken Wu同学的博客,是目前看到比较完整的HBase调优文章. 原文链接:HBase性能调优. 因官方Book Performance Tuning部分章节没有按配置项进行索引,不能达到快速查阅的效果.

hbase性能调优

- - 数据库 - ITeye博客
   1)、hbase.regionserver.handler.count:该设置决定了处理RPC的线程数量,默认值是10,通常可以调大,比如:150,当请求内容很大(上MB,比如大的put、使用缓存的scans)的时候,如果该值设置过大则会占用过多的内存,导致频繁的GC,或者出现OutOfMemory,因此该值不是越大越好.

MapReduce - 性能调优

- - CSDN博客云计算推荐文章
        Hadoop为用户作业提供了多种可配置的参数,以允许用户根据作业特点调整这些参数值使作业运行效率达到最优.         对于一大批MapReduce程序,如果可以设置一个Combiner,那么对于提高作业性能是十分有帮助的. Combiner可减少Map Task中间输出的结果,从而减少各个Reduce Task的远程拷贝数据量,最终表现为Map Task和Reduce Task执行时间缩短.

Java 性能调优

- - 编程语言 - ITeye博客
1.用new关键词创建类的实例时,构造函数链中的所有构造函数都会被自动调用. 但如果一个对象实现了Cloneable接口,我们可以调用它的clone()方法. clone()方法不会调用任何类构造函数. 在使用设计模式(Design Pattern)的场合,如果用Factory模式创建对象,则改用clone()方法创建新的对象实例非常简单.

Spark性能调优

- - zzm
通常我们对一个系统进行性能优化无怪乎两个步骤——性能监控和参数调整,本文主要分享的也是这两方面内容. Spark提供了一些基本的Web监控页面,对于日常监控十分有用. http://master:4040(默认端口是4040,可以通过spark.ui.port修改)可获得这些信息:(1)stages和tasks调度情况;(2)RDD大小及内存使用;(3)系统环境信息;(4)正在执行的executor信息.

性能调优攻略

- - 酷壳 - CoolShell.cn
关于性能优化这是一个比较大的话题,在《 由12306.cn谈谈网站性能技术》中我从业务和设计上说过一些可用的技术以及那些技术的优缺点,今天,想从一些技术细节上谈谈性能优化,主要是一些代码级别的技术和方法. 本文的东西是我的一些经验和知识,并不一定全对,希望大家指正和补充. 在开始这篇文章之前,大家可以移步去看一下酷壳以前发表的《 代码优化概要》,这篇文章基本上告诉你—— 要进行优化,先得找到性能瓶颈.

[原]Java性能调优

- - 傲慢的上校的专栏
写Java也有n年了,现在还是有不少的坏的代码习惯,也通过学习别人的代码学到了不少好的习惯. 留给自己做个警戒,提示以后写代码的时候注意. 在文章的后面,会提供整理的原材料下载. 1、尽量少用new生成新对象.         用new创建类的实例时,构造雨数链中所有构造函数都会被自动调用,操作速度较慢.