值得学习的python项目

标签: 值得 学习 python | 发表时间:2015-01-08 09:46 | 作者:niwenxian1
出处:http://blog.csdn.net

此网站整理的2014年值得一学的pytho项目,http://pycoders.com/2014/

项目资源都在github上,python程序员进阶必备。

就当作2015年的计划吧。先列表,再对号


Projects


1. robobrowser
A library for web scraping built on Requests and BeautifulSoup. Like Mechanize, but with tests, docs, and a Pythonic interface.
github.com
Shared by @whatthecarp




2. mining
github.com
Shared by @mgrouchy



3.wagtail
Wagtail is a Django content management system with a fresh take. Beautifully designed so if you are looking for an alternative to Django CMS here is your shot.
github.com
Shared by @tomd




4. huey
A multi-threaded task queue for Python.
github.com
Shared by @myusuf3




5.Flask API
Love Django REST Framework? You can now enjoy the same beautiful APIs within Flask.
flaskapi.org
Shared by @myusuf3




6.Mario Level 1 In Python
Recreating the first level in Mario using PyGame. Awesome for anyone interested in build a 2D platformer.
github.com
Shared by @myusuf3




7.Algorithms
A collection of Data Structures and Algorithms in Python.
github.com
Shared by @myusuf3




8.rumps
Ridiculously Uncomplicated Mac OSX Python Status Bar Apps! Got a little app you want to write you can do it Python now!
github.com
Shared by @myusuf3




9.psdash
Nice looking web dashboard written in Flask that can display data about your system and its processes as returned by psutil.
github.com
Shared by @mgrouchy




10.500 Lines or Less
Awesome repository of how things work with computers and software. I am sure we have shared this before but its definitely worth another look.
github.com
Shared by @myusuf3




11.IPython Notebook Themes
Awesome theme customization for IPython Notebooks!
github.com
Shared by @myusuf3




12.Jarvis
An attempt to create a Jarvis-like personal assistant with Python.
github.com
Shared by @mgrouchy




13.Python Practice Projects
A series of Python practice projects to help your hone your craft with deliberate practice.
pythonpracticeprojects.com
Shared by @mgrouchy




14.Flask-Foundation
A foundation leveraging best practices that you can use to start building your flask applications with.
github.com
Shared by @mgrouchy






15.Stellar
Fast database snapshots for development. It's like Git for databases.
github.com
Shared by @versae




16.percol
Nice. Percol is an interactive grep tool in your terminal. Check out the README for a demo and more information.
github.com
Shared by @mgrouchy




17.magpie
Git-Backed Evernote Replacement.
github.com
Shared by @myusuf3




18.Explore Flask
The Explore Flask book is now freely available online. Time to upgrade your Flask knowledge.
exploreflask.com
Shared by @mgrouchy




19.The Stolen Crown RPG
Cool! A Fantasy RPG built with Python and PyGame.
github.com
Shared by @mgrouchy




20.django-quicky
A collection of tools to get you focused on what you building rather than the usual nitty gritty, tons of of cool little functionality to speed things up!
github.com
Shared by @myusuf3




21.doitlive
Cool little hack to make you look like a superstar during presentations and screencasts. It allows you to write code before hand, and replays the commands in a fake terminal session as you type random characters.
github.com
Shared by @myusuf3




22.Data Science 45 minute intros.
45 minute Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques.
github.com
Shared by @mgrouchy




23.battleschool
This is neat. Set up your development environment using ansible in a similar way you would set up your machine with something like Boxen.
github.com
Shared by @mgrouchy




24.awesome-python
A curated list of awesome Python resources, frameworks, libraries and software.
github.com
Shared by @mgrouchy




25.inbox
Inbox platform launched earlier this week, with tons of SDKs and libraries! This is the one in Python. Great premise and should enable people to do some great stuff!
github.com
Shared by @myusuf3




26.py-must-watch
A great collection of must watch Python videos. Great resource to start levelling up your Python knowledge.
github.com
Shared by @STajbakhsh




27.awesome-machine-learning
A curated list of awesome Machine Learning frameworks, libraries and software.
github.com
Shared by @myusuf3




28.python-fields
Writing container classes often requires the writing of significant amounts of boilerplate. Avoid all of that with the fields module which offers a way to avoid it.
github.com
Shared by @mgrouchy




29.awesome-django
Over the last few issues there have been other "awesome" collections. If you are into Django, this is the one for you!
github.com
Shared by @myusuf3




30.Toga
A Python native, OS native GUI toolkit. Very cool project for building Native GUI apps with Python.
pybee.org
Shared by @mgrouchy




31.doorman
Keeps your secrets, secret. Allows you to put the keys, passwords and things you want to keep secret in a config file and then hide and show your secrets.
github.com
Shared by @halitalptekin




32.vim-bootstrap
A simple website that helps you bootstrap your .vimrc for your preferred language.
github.com
Shared by @mgrouchy




33.python-patterns
A collection of common Python design patterns and idioms.
github.com
Shared by @mgrouchy




34.flask-xxl
Interesting. A best practices approach to creating large web apps, with the goal of making flask feel more like django.
github.com
Shared by @mgrouchy




35.discover-flask
A weekly series of Screencasts covering an introduction to Flask.
github.com
Shared by @mgrouchy




36.awesome-sqlalchemy
Lots of really awesome SQLAlchemy resources.
github.com
Shared by @mgrouchy




37.lenscap
Lenscap is a static site generator for creating beautiful photo narratives
github.com
Shared by @myusuf3




38.schematics
A Python library to combine types into structures, validate them, and transform your data based on simple descriptions.
github.com
Shared by @mgrouchy




39.home-assistant
Home automation with Python.
github.com
Shared by @mgrouchy




40.500 Lines or Less
Awesome repository of how things work with computers and software. I am sure we have shared this before but its definitely worth another look.
github.com
Shared by @myusuf3




41.tortilla
Very cool project for consuming APIs made easy. Give it a look if you are tried of writing API wrappers.
github.com
Shared by @myusuf3




42.iterstuff
A collection of tools for working with iterators.
github.com
Shared by @benlast
作者:niwenxian1 发表于2015-1-8 1:46:25 原文链接
阅读:185 评论:0 查看评论

相关 [值得 学习 python] 推荐:

值得学习的python项目

- - CSDN博客编程语言推荐文章
此网站整理的2014年值得一学的pytho项目,http://pycoders.com/2014/. 项目资源都在github上,python程序员进阶必备. Nice looking web dashboard written in Flask that can display data about your system and its processes as returned by psutil.

GitHub 上最著名的20个 Python 机器学习项目,值得收藏!

- - IT瘾-geek
源 | kdnuggets|小象. 开源是技术创新和快速发展的核心. 这篇文章向你展示Python机器学习开源项目以及在分析过程中发现的非常有趣的见解和趋势. 我们分析了GitHub上的前20名Python机器学习项目,发现scikit-Learn,PyLearn2和NuPic是贡献最积极的项目. 让我们一起在Github上探索这些流行的项目.

每个程序员都应该学习使用Python或Ruby

- Kings - 开源中国社区最新新闻
本文是从 Why every programmer should learn Python or Ruby 这篇文章翻译而来. 如 果你是个学生,你应该会C,C++和Java. 还会一些VB,或C#/.NET. 多少你还可能开发过一些Web网页,你知道一些HTML,CSS和 JavaScript知识.

学习python语言来快速开发web(一)

- - ITeye博客
安装python到windows.    下载http://www.python.org/download/releases/2.7.6/.   安装到d:\python. 安装eclipse和python插件pydev.    后者可以方便在eclipse这个熟悉的强大的ide中开发python程序.

【外刊IT评论网】每个程序员都应该学习使用Python或Ruby

- 悟怡 - 外刊IT评论网
本文是从 Why every programmer should learn Python or Ruby 这篇文章翻译而来. 如果你是个学生,你应该会C,C++和Java. 还会一些VB,或C#/.NET. 多少你还可能开发过一些Web网页,你知道一些HTML,CSS和JavaScript知识. 总体上说,我们很难发现会有学生显露出掌握超出这几种语言范围外的语言的才能.

[python爬虫] Selenium常见元素定位方法和操作的学习介绍

- - CSDN博客编程语言推荐文章
        这篇文章主要Selenium+Python自动测试或爬虫中的常见定位方法、鼠标操作、键盘操作介绍,希望该篇基础性文章对你有所帮助,如果有错误或不足之处,请海涵~.         前文目录:.          [Python爬虫] 在Windows下安装PhantomJS和CasperJS及入门介绍(上).

从零开始掌握Python机器学习:十四步教程 - 知乎专栏

- -
Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源. 你现在也在考虑从 Python 入门机器学习吗. 本教程或许能帮你成功上手,从 0 到 1 掌握 Python 机器学习,至于后面再从 1 到 100 变成机器学习专家,就要看你自己的努力了. 本教程原文分为两个部分,机器之心在本文中将其进行了整合,原文可参阅:7 Steps to Mastering Machine Learning With Python 和 7 More Steps to Mastering Machine Learning With Python.

使用python+机器学习方法进行情感分析(详细步骤) - 51CTO.COM

- -
【限时免费】年底最强一次云计算大会,看传统、社区、互联网企业如何碰撞. 不是有词典匹配的方法了吗?怎么还搞多个机器学习方法. 因为词典方法和机器学习方法各有千秋. 机器学习的方法精确度更高,因为词典匹配会由于语义表达的丰富性而出现很大误差,而机器学习方法不会. 无论是主客观分类还是正负面情感分类,机器学习都可以完成任务.

关于Python数据分析,这里有一条高效的学习路径

- -
谷歌的数据分析可以预测一个地区即将爆发的流感,从而进行针对性的预防;淘宝可以根据你浏览和消费的数据进行分析,为你精准推荐商品;口碑极好的网易云音乐,通过其相似性算法,为不同的人量身定制每日歌单……. 数据正在变得越来越常见,小到我们每个人的社交网络、消费信息、运动轨迹……,大到企业的销售、运营数据,产品的生产数据,交通网络数据…….