[原]聊聊分布式事务

标签: | 发表时间:2015-01-28 01:53 | 作者:KimmKing
出处:http://blog.csdn.net/kimmking
事务就是一个会话过程中,对上下文的影响是一致的,要么所有的更改都做了,要么所有的更变都撤销掉。就要么生,要么死。没有半死不死的中间不可预期状态。
参考下薛定谔的猫。
事务是为了保障业务数据的完整性和准确性的。

分布式事务,常见的两个处理办法就是两段式提交和补偿。
两段式提交典型的就是XA,有个事务协调器,告诉大家,来都准备好提交,大家回复,都准备好了,然后协调器告诉大家,一起提交,大家都提交了。
补偿比较好理解,先处理业务,然后定时或者回调里,检查状态是不是一致的,如果不一致采用某个策略,强制状态到某个结束状态(一般是失败状态),然后就世界太平了。典型的就是冲正操作。

准备好了以后,如果没有问题,收到提交,所有人都开始提交。
这个时候,比如对数据库来说,有redo日志的。
如果某个数据库这时候宕机了,那么它重启的时候,先执行检查,也会把上一次的这些操作都提交掉的。所以各个点的数据都是一致的。

问题 1:比如 一个业务要调用很多的服务都是写操作,如果有其中一个写的服务失败了,怎么办 ?假设 4个写的吧,有2个写失败了 。

kimmking:淘宝之类的网站一般的做法是,如果4个都成功才算成功,那么这次提交时4个写都设置成一个中间状态,先容许不一致。然后4个执行完成了以后,回调或是定时任务里检查这4个数据是不是一致的,如果一致就全部置为成功状态,如果不一致就全部置为失败。

复杂的业务交互过程中,不建议使用强一致性的分布式事务。解决分布式事务的最好办法就是不考虑分布式事务。就像刚说的问题一样,把分布式的事务过程拆解成多个中间状态,中间状态的东西不允许用户直接操作,等状态都一致成功,或者检测到不一致的时候全部失败掉。就解耦了这个强一致性的过程。

一般情况下准实时就成了。涉及到钱,有时候也可以这么搞。
淘宝几s内完整一个订单处理,不是什么问题吧。
银行也不是全部都强一致性。也会扎差,也会冲正。
特别是涉及到多个系统的时候,我们比如买机票,支付完成以后,只支付完成状态,然后返回给用户了,我们过几分钟再刷新页面,才会看到变成已出票,订单完成状态。
这个时候,如果我们要求所有处理,都是强一致性的,那么久完蛋了。页面要死在那儿几分钟,才把这个事务处理完成,返回给用户。

这样就肯定涉及一个问题,支付了,但是最终出票没出来。那就没办法,商量换票或退款。
淘宝的订单改成出票失败,给支付发消息通知退款。
慢的时候,有可能是手工出票,这时出一张票半小时都可能,如果要求都必须强一致性的话,所有处理线程都挂在哪儿,系统早就完蛋了。

解决分布式事务的最好办法就是不考虑分布式事务。
拆分,大的业务流程,转化成几个小的业务流程,然后考虑最终一致性。

问题2:分布式事务是你们自己开发的,还是数据库自带的?
kimmking:
1、只要一个处理逻辑能保证要么成功,要么跟什么也没做一样,都算是事务。数据库事务,MQ也有事务。
你自己甚至可以写个程序生成两个文件,要么都生成了,要么都删掉不留痕迹,这也算是事务。
2、分布式事务这一块有个XA规范,实现XA接口的事务,都可以加入到一个分布式事务中,被XA容器管理起来。
3、补偿的办法,需要具体情况具体分析,没有一个各种场合都适用的框架。


作者:KimmKing 发表于2015-1-27 17:53:38 原文链接
阅读:108 评论:0 查看评论

相关 [分布] 推荐:

分布式日志

- - Java - 编程语言 - ITeye博客
最近完成一个简单的日志管理系统,拿出来跟大家分享一下. 3、支持文件输出、habse输出、mongodb输出. 基于以上三点功能,我们下面详细说明. 说道支持这个功能,有个同事认为没有这个必要,他的观点是log4j的配置不需要经常变动,不需要支持这样的功能;本人的观点是“配置可以进行统一管理、而且正式机跟测试机的log4j的配置肯定会有一些差异的”,因此这个功能是必须的.

分布式事务简述

- If you are thinking one year ahead, you plant rice. If you are thinking twenty years ahead, you plant trees. If you are thinking a hundred years ahead, you educate people. - BlogJava-首页技术区
  随着系统越来越大,不断的模块化和SOA化,你的系统可能被分散于不同的机器上,这时候,你原先的单机本地事务可能已经无法满足你的需求,你可能要跨系统跨资源的去使用事务.   具体就不多介绍了,相信大家都能明白ACID特性的基本含义. 而一个具体的事务需要涉及到的模型(无论哪种模型)一般由下面几部分组成:.

Hadoop与分布式计算

- 透明 - 丕子
写本文由leftnoteasy发布于http://leftnoteasy.cnblogs.com 本文可以被全部或者部分的使用,但请注明出处,如果有问题,可以联系wheeleast (at) gmail.com, 也可以加作者的新浪微博:http://weibo.com/leftnoteasy. 很久没有写写博客了,之前主要是换工作,耽误了很多的时间,让人也变得懒散,不想花大时间来写东西.

分布式缓存-Memcached

- - 人月神话的BLOG
分布式缓存出于如下考虑,首先是缓存本身的水平线性扩展问题,其次是缓存大并发下的本身的性能问题,再次避免缓存的单点故障问题(多副本和副本一致性). 分布式缓存的核心技术包括首先是内存本身的管理问题,包括了内存的分配,管理和回收机制. 其次是分布式管理和分布式算法,其次是缓存键值管理和路由. 原文: http://wenku.baidu.com/view/8686d46c7e21af45b307a8c3.html.

再谈集中和分布

- - 人月神话的BLOG
上篇文章转载了关于mysql数据库的垂直和水平拆分的相关内容,本篇文章再谈下关于应用集中化后的集中和分布相关策略问题,以及最近关于完全去IOE思路的一些思考和回顾. 现在有一个问题我暂时还没得到比较明确的一些验证,如对于当前x86的pc server服务器好的配置完全可以达到200万TPMC,对于磁盘阵列可以挂接到20T甚至更高的存储容量.

hadoop分布式配置

- - CSDN博客云计算推荐文章
一、前面的部分见伪分布式配置. 二、实现SSH无密码登录远程主机(只在源主机上配置). 注意:以上scp命令表示把authoriezd_keys远程复制到对应主机的相应目录下. slave2是目的主机的名字,需要在源主机的/etc/hosts下配置slave2以及对应的IP地址 192.168.0.5.

浅谈分布式缓存

- - CSDN博客推荐文章
在前面的一些文章中,从实战的角度,讲解了有关 memcached的应用、容灾、监控等等. 但是缺乏对理论的讲解和原理性的剖析. 本文将从理论的角度去介绍,让大家从宏观上对“分布式缓存、nosql”等技术有所了解,以便进一步学习和使用. 在构建大规模的web应用时,缓存技术可以说是必备的,学习的必要性不言而喻.

关于分布式事务

- - Web前端 - ITeye博客
Mysql当前分布式事务只支持Innodb存储引擎. 1个分布式事务由多个行为在不同的数据库上执行,1个分布式事务的执行成功意味着相关数据库上的行为执行均成功. 使用分布式事务的应用程序设计1个或多个资源管理器和一个事务管理器. 资源管理器(RM):用户提供通向事务的途径. 数据库服务器是一个种资源管理器.

BDRP分布式redis集群

- - 百度运维团队技术博客
BDRP(baidu distributed redis platform)是包含 twemproxy, redis,redis-sentinel等多个模块开发的分布式redis平台. bdrp已经在github上进行了开源, bdrp的github项目点这里. 目前redis集群架构主要有以下几个组件: twemproxy:redis的代理系统,可以选择多种数据分片算法 redis:集群的redis存储节点 sentinel:redis官方的集群高可用组件,可以监控redis主节点故障,并进行主备切换.

分布式搜索算法

- - 杨尚川的个人页面
对于搜索引擎来说,索引存放在成千上万台机器上,如何进行分布式搜索呢. 假设搜索结果是以分页的方式显示,以PageNumber代表当前页,从1开始,以PageSize代表页面大小,默认为10,以N代表搜索服务器数量. 最简单的分布式搜索算法为:有一台 合并服务器负责接受用户的搜索请求,然后分别向N台机器获取前PageNumber*PageSize条结果,得到的结果数为N*PageNumber*PageSize,然后把这些数据重新进行排序,根据所要显示的页面PageNumber,获取从(PageNumber - 1) * PageSize + 1开始的PageSize条结果返回给用户.