RPC原理详解 - 永志

标签: rpc 原理 | 发表时间:2015-03-08 09:20 | 作者:永志
出处:

RPC 功能目标

RPC 的主要功能目标是让构建分布式计算(应用)更容易,在提供强大的远程调用能力时不损失本地调用的语义简洁性。 为实现该目标,RPC 框架需提供一种透明调用机制让使用者不必显式的区分本地调用和远程调用。 下面我们将具体细化 stub 结构的实现。

RPC 调用分类

RPC 调用分以下两种:

  1. 同步调用
    客户方等待调用执行完成并返回结果。
  2. 异步调用
    客户方调用后不用等待执行结果返回,但依然可以通过回调通知等方式获取返回结果。 若客户方不关心调用返回结果,则变成单向异步调用,单向调用不用返回结果。

异步和同步的区分在于是否等待服务端执行完成并返回结果。

RPC 结构拆解

如下图所示。

RPC 服务方通过  RpcServer 去导出(export)远程接口方法,而客户方通过  RpcClient 去引入(import)远程接口方法。 客户方像调用本地方法一样去调用远程接口方法,RPC 框架提供接口的代理实现,实际的调用将委托给代理  RpcProxy 。 代理封装调用信息并将调用转交给  RpcInvoker 去实际执行。 在客户端的  RpcInvoker 通过连接器  RpcConnector 去维持与服务端的通道  RpcChannel, 并使用  RpcProtocol 执行协议编码(encode)并将编码后的请求消息通过通道发送给服务方。

RPC 服务端接收器  RpcAcceptor 接收客户端的调用请求,同样使用  RpcProtocol 执行协议解码(decode)。 解码后的调用信息传递给  RpcProcessor 去控制处理调用过程,最后再委托调用给  RpcInvoker 去实际执行并返回调用结果。

 

RPC 组件职责

上面我们进一步拆解了 RPC 实现结构的各个组件组成部分,下面我们详细说明下每个组件的职责划分。

  1. RpcServer
    负责导出(export)远程接口
  2. RpcClient
    负责导入(import)远程接口的代理实现
  3. RpcProxy
    远程接口的代理实现
  4. RpcInvoker
    客户方实现:负责编码调用信息和发送调用请求到服务方并等待调用结果返回
    服务方实现:负责调用服务端接口的具体实现并返回调用结果
  5. RpcProtocol
    负责协议编/解码
  6. RpcConnector
    负责维持客户方和服务方的连接通道和发送数据到服务方
  7. RpcAcceptor
    负责接收客户方请求并返回请求结果
  8. RpcProcessor
    负责在服务方控制调用过程,包括管理调用线程池、超时时间等
  9. RpcChannel
    数据传输通道

RPC 实现分析

在进一步拆解了组件并划分了职责之后,这里以在 java 平台实现该 RPC 框架概念模型为例,详细分析下实现中需要考虑的因素。

导出远程接口

导出远程接口的意思是指只有导出的接口可以供远程调用,而未导出的接口则不能。 在 java 中导出接口的代码片段可能如下:

DemoService demo = new ...;
RpcServer server = new ...;
server.export(DemoService.class, demo, options);

我们可以导出整个接口,也可以更细粒度一点只导出接口中的某些方法,如:

// 只导出 DemoService 中签名为 hi(String s) 的方法
server.export(DemoService.class, demo, "hi", new Class<?>[] { String.class }, options);

java 中还有一种比较特殊的调用就是多态,也就是一个接口可能有多个实现,那么远程调用时到底调用哪个? 这个本地调用的语义是通过 jvm 提供的引用多态性隐式实现的,那么对于 RPC 来说跨进程的调用就没法隐式实现了。 如果前面 DemoService 接口有 2 个实现,那么在导出接口时就需要特殊标记不同的实现,如:

DemoService demo = new ...;
DemoService demo2 = new ...;
RpcServer server = new ...;
server.export(DemoService.class, demo, options);
server.export("demo2", DemoService.class, demo2, options);

上面 demo2 是另一个实现,我们标记为 demo2 来导出, 那么远程调用时也需要传递该标记才能调用到正确的实现类,这样就解决了多态调用的语义。

导入远程接口与客户端代理

导入相对于导出远程接口,客户端代码为了能够发起调用必须要获得远程接口的方法或过程定义。 目前,大部分跨语言平台 RPC 框架采用根据 IDL 定义通过 code generator 去生成 stub 代码, 这种方式下实际导入的过程就是通过代码生成器在编译期完成的。 我所使用过的一些跨语言平台 RPC 框架如 CORBAR、WebService、ICE、Thrift 均是此类方式。

代码生成的方式对跨语言平台 RPC 框架而言是必然的选择,而对于同一语言平台的 RPC 则可以通过共享接口定义来实现。 在 java 中导入接口的代码片段可能如下:

RpcClient client = new ...;
DemoService demo = client.refer(DemoService.class);
demo.hi("how are you?");

在 java 中  import 是关键字,所以代码片段中我们用 refer 来表达导入接口的意思。 这里的导入方式本质也是一种代码生成技术,只不过是在运行时生成,比静态编译期的代码生成看起来更简洁些。 java 里至少提供了两种技术来提供动态代码生成,一种是 jdk 动态代理,另外一种是字节码生成。 动态代理相比字节码生成使用起来更方便,但动态代理方式在性能上是要逊色于直接的字节码生成的,而字节码生成在代码可读性上要差很多。 两者权衡起来,个人认为牺牲一些性能来获得代码可读性和可维护性显得更重要。

协议编解码

客户端代理在发起调用前需要对调用信息进行编码,这就要考虑需要编码些什么信息并以什么格式传输到服务端才能让服务端完成调用。 出于效率考虑,编码的信息越少越好(传输数据少),编码的规则越简单越好(执行效率高)。 我们先看下需要编码些什么信息:

调用编码

  1. 接口方法
    包括接口名、方法名
  2. 方法参数
    包括参数类型、参数值
  3. 调用属性
    包括调用属性信息,例如调用附件隐式参数、调用超时时间等

返回编码

  1. 返回结果
    接口方法中定义的返回值
  2. 返回码
    异常返回码
  3. 返回异常信息
    调用异常信息

除了以上这些必须的调用信息,我们可能还需要一些元信息以方便程序编解码以及未来可能的扩展。 这样我们的编码消息里面就分成了两部分,一部分是元信息、另一部分是调用的必要信息。 如果设计一种 RPC 协议消息的话,元信息我们把它放在协议消息头中,而必要信息放在协议消息体中。 下面给出一种概念上的 RPC 协议消息设计格式:

消息头

 

  • magic : 协议魔数,为解码设计
  • header size: 协议头长度,为扩展设计
  • version : 协议版本,为兼容设计
  • st : 消息体序列化类型
  • hb : 心跳消息标记,为长连接传输层心跳设计
  • ow : 单向消息标记,
  • rp : 响应消息标记,不置位默认是请求消息
  • status code: 响应消息状态码
  • reserved : 为字节对齐保留
  • message id : 消息 id
  • body size : 消息体长度

消息体

采用序列化编码,常见有以下格式

  • xml : 如 webservie SOAP
  • json : 如 JSON-RPC
  • binary: 如 thrift; hession; kryo 等

格式确定后编解码就简单了,由于头长度一定所以我们比较关心的就是消息体的序列化方式。 序列化我们关心三个方面:

  1. 序列化和反序列化的效率,越快越好。
  2. 序列化后的字节长度,越小越好。
  3. 序列化和反序列化的兼容性,接口参数对象若增加了字段,是否兼容。

上面这三点有时是鱼与熊掌不可兼得,这里面涉及到具体的序列化库实现细节,就不在本文进一步展开分析了。

传输服务

协议编码之后,自然就是需要将编码后的 RPC 请求消息传输到服务方,服务方执行后返回结果消息或确认消息给客户方。 RPC 的应用场景实质是一种可靠的请求应答消息流,和 HTTP 类似。 因此选择长连接方式的 TCP 协议会更高效,与 HTTP 不同的是在协议层面我们定义了每个消息的唯一 id,因此可以更容易的复用连接。

既然使用长连接,那么第一个问题是到底 client 和 server 之间需要多少根连接? 实际上单连接和多连接在使用上没有区别,对于数据传输量较小的应用类型,单连接基本足够。 单连接和多连接最大的区别在于,每根连接都有自己私有的发送和接收缓冲区, 因此大数据量传输时分散在不同的连接缓冲区会得到更好的吞吐效率。 所以,如果你的数据传输量不足以让单连接的缓冲区一直处于饱和状态的话,那么使用多连接并不会产生任何明显的提升, 反而会增加连接管理的开销。

连接是由 client 端发起建立并维持。 如果 client 和 server 之间是直连的,那么连接一般不会中断(当然物理链路故障除外)。 如果 client 和 server 连接经过一些负载中转设备,有可能连接一段时间不活跃时会被这些中间设备中断。 为了保持连接有必要定时为每个连接发送心跳数据以维持连接不中断。 心跳消息是 RPC 框架库使用的内部消息,在前文协议头结构中也有一个专门的心跳位, 就是用来标记心跳消息的,它对业务应用透明。

执行调用

client stub 所做的事情仅仅是编码消息并传输给服务方,而真正调用过程发生在服务方。 server stub 从前文的结构拆解中我们细分了  RpcProcessor 和  RpcInvoker 两个组件, 一个负责控制调用过程,一个负责真正调用。 这里我们还是以 java 中实现这两个组件为例来分析下它们到底需要做什么?

java 中实现代码的动态接口调用目前一般通过反射调用。 除了原生的 jdk 自带的反射,一些第三方库也提供了性能更优的反射调用, 因此 RpcInvoker 就是封装了反射调用的实现细节。

调用过程的控制需要考虑哪些因素,RpcProcessor 需要提供什么样地调用控制服务呢? 下面提出几点以启发思考:

  1. 效率提升
    每个请求应该尽快被执行,因此我们不能每请求来再创建线程去执行,需要提供线程池服务。
  2. 资源隔离
    当我们导出多个远程接口时,如何避免单一接口调用占据所有线程资源,而引发其他接口执行阻塞。
  3. 超时控制
    当某个接口执行缓慢,而 client 端已经超时放弃等待后,server 端的线程继续执行此时显得毫无意义。

RPC 异常处理

无论 RPC 怎样努力把远程调用伪装的像本地调用,但它们依然有很大的不同点,而且有一些异常情况是在本地调用时绝对不会碰到的。 在说异常处理之前,我们先比较下本地调用和 RPC 调用的一些差异:

  1. 本地调用一定会执行,而远程调用则不一定,调用消息可能因为网络原因并未发送到服务方。
  2. 本地调用只会抛出接口声明的异常,而远程调用还会跑出 RPC 框架运行时的其他异常。
  3. 本地调用和远程调用的性能可能差距很大,这取决于 RPC 固有消耗所占的比重。

正是这些区别决定了使用 RPC 时需要更多考量。 当调用远程接口抛出异常时,异常可能是一个业务异常, 也可能是 RPC 框架抛出的运行时异常(如:网络中断等)。 业务异常表明服务方已经执行了调用,可能因为某些原因导致未能正常执行, 而 RPC 运行时异常则有可能服务方根本没有执行,对调用方而言的异常处理策略自然需要区分。

由于 RPC 固有的消耗相对本地调用高出几个数量级,本地调用的固有消耗是纳秒级,而 RPC 的固有消耗是在毫秒级。 那么对于过于轻量的计算任务就并不合适导出远程接口由独立的进程提供服务, 只有花在计算任务上时间远远高于 RPC 的固有消耗才值得导出为远程接口提供服务。

总结

至此我们提出了一个 RPC 实现的概念框架,并详细分析了需要考虑的一些实现细节。 无论 RPC 的概念是如何优雅,但是“草丛中依然有几条蛇隐藏着”,只有深刻理解了 RPC 的本质,才能更好地应用。


本文链接: RPC原理详解,转载请注明。

相关 [rpc 原理] 推荐:

RPC原理详解 - 永志

- - 博客园_首页
RPC 的主要功能目标是让构建分布式计算(应用)更容易,在提供强大的远程调用能力时不损失本地调用的语义简洁性.  为实现该目标,RPC 框架需提供一种透明调用机制让使用者不必显式的区分本地调用和远程调用. 下面我们将具体细化 stub 结构的实现. 客户方等待调用执行完成并返回结果. 客户方调用后不用等待执行结果返回,但依然可以通过回调通知等方式获取返回结果.

你应该知道的RPC原理

- - ITeye资讯频道
在校期间大家都写过不少程序,比如写个hello world服务类,然后本地调用下,如下所示. 这些程序的特点是服务消费方和服务提供方是本地调用关系. 而一旦踏入公司尤其是大型互联网公司就会发现,公司的系统都由成千上万大大小小的服务组成,各服务部署在不同的机器上,由不同的团队负责. 这时就会遇到两个问题:1)要搭建一个新服务,免不了需要依赖他人的服务,而现在他人的服务都在远端,怎么调用.

Hadoop RPC机制

- - 企业架构 - ITeye博客
RPC(Remote Procedure Call Protocol)远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议. Hadoop底层的交互都是通过 rpc进行的. 例如:datanode和namenode 、tasktracker和jobtracker、secondary namenode和namenode之间的通信都是通过rpc实现的.

JAVA RPC 通讯框架

- - 经验沉淀 知识结晶
Bison 是一个JAVA 程间的通信框架,基于apache mina 实现,对mina进行了byteBuffer 缓冲区重用以及半包出处时减少拷贝. 客户端(bison-client) 功能点. 2 支持高用性:高可用的一个基本原则,可以接受快速的失败,但不能接受长时间的等待. Githup地址:https://github.com/gavenpeng/Bison.

Avro RPC 对比测试

- - 行业应用 - ITeye博客
J2EE平台常采用多层分布式的架构体系. 分布式服务节点之间需要通讯和交互(业务节点和资源节点之间),服务端和客户端需要交互(终端客户端需要调用服务端的远程服务,客户端有C实现的,也有Java等其他语言实现的). 因此基础平台需要提供一个稳定、高效的、可伸缩的RPC服务性组件. 稳定,高性能;作为一个基础性的骨架组件,高可用性和高性能是必备的;传输层希望是面向连接的TCP通信.

zmq-rpc:基于zeromq网络层编写的protobuf RPC框架

- Shengbin - codedump
阅读过zmq的代码之后,感觉这个网络层是我目前见过最高效的–线程之间使用lockfree的消息队列保存消息,可以启动多个I/O线程分担压力等等特性.于是决定基于它写一个protobuf RPC的框架.. 另外,这里使用的protobuf是旧版本2.3.0,新版本2.4.1的生成的RPC service接口跟原来不太一致,暂时还没有去研究它.BTW,升级版本之后导致原来的接口发生变化这是一个很操蛋的事情..

【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架

- - 开源软件 - ITeye博客
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,. 【RPC框架Hessian四】Hessian与Spring集成.

集成libevent,google protobuf的RPC框架

- goodman - C++博客-那谁的技术博客
chenshuo的evproto同样也是集成libevent与google protobuf的RPC框架,不过在对libevent的使用上,这里的做法与他不尽相同:. 1) 他使用了libevent自带的RPC功能, 而这里只使用到libevent对网络I/O进行的封装的最基本的功能.. eventrpc项目目前是avidya下的一个子项目,avidya项目的定位是实现一些分布式的玩具系统(比如google已经公开论文的chubby,mapreduce,GFS等),也许以后不一定能被用上,但是也要实践做一把.由于有一个好用的RPC框架是做分布式的必需品,所有首先实现eventrpc这个子项目了,以后也许还会实现其他语言的版本,如python,java..

NFS-RPC框架优化过程

- EricSheng - BlueDavy之技术blog
NFS-RPC框架从编写之初,到现在为止(应该还会有些提升,不过估计不大),每秒支撑的请求数上升了好几倍,测试结果的演变为:. 以上测试结果为在100并发、100 request byte、100 response byte以及单连接下的背景下得出的,在这篇blog中来分享下这个框架所做的一些优化动作,希望能给编写rpc框架或使用mina/netty/grizzly的同学们一点点帮助,也希望得到高手们更多的指点.

RPC、ORB、MOM三类中间件比较

- - 互联网 - ITeye博客
网上漫无目的的爬文档看,发现Oracle一篇《面向消息的中间件 (Message-Oriented Middleware, MOM). 》讲得不错,摘部分内容出来,大家分享,我也留个备份.  中间件可以划分为以下几类:. 基于远程过程调用 (Remote Procedure Call, RPC) 的中间件,允许一个应用程序中的过程调用远程应用程序中的过程,就好像它们是本地调用一样.