map和reduce 个数的设定 (Hive优化)经典

标签: map reduce 设定 | 发表时间:2015-06-17 14:34 | 作者:王书兴
出处:http://www.iteye.com

一、    控制hive任务中的map数: 

1.    通常情况下,作业会通过input的目录产生一个或者多个map任务。 
主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);

2.    举例: 
a)    假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数
b)    假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数
即,如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块。

3.    是不是map数越多越好? 
答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,
而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。
而且,同时可执行的map数是受限的。

 

4.    是不是保证每个map处理接近128m的文件块,就高枕无忧了? 
答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,
如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。

针对上面的问题3和4,我们需要采取两种方式来解决:即减少map数和增加map数;

如何合并小文件,减少map数? 
    假设一个SQL任务:
         Select count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’;
         该任务的inputdir  /group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04
         共有194个文件,其中很多是远远小于128m的小文件,总大小9G,正常执行会用194个map任务。
         Map总共消耗的计算资源: SLOTS_MILLIS_MAPS= 623,020

         我通过以下方法来在map执行前合并小文件,减少map数:
         set mapred.max.split.size=100000000;
                    set mapred.min.split.size.per.node=100000000;
                    set mapred.min.split.size.per.rack=100000000;
                    set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
                 再执行上面的语句,用了74个map任务,map消耗的计算资源:SLOTS_MILLIS_MAPS= 333,500
         对于这个简单SQL任务,执行时间上可能差不多,但节省了一半的计算资源。
         大概解释一下,100000000表示100M, set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;这个参数表示执行前进行小文件合并,
         前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),
         进行合并,最终生成了74个块。
         
如何适当的增加map数? 

         当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。
         假设有这样一个任务:
         Select data_desc,
                count(1),
                count(distinct id),
                sum(case when …),
                sum(case when ...),
                sum(…)
        from a group by data_desc
                   如果表a只有一个文件,大小为120M,但包含几千万的记录,如果用1个map去完成这个任务,肯定是比较耗时的,这种情况下,我们要考虑将这一个文件合理的拆分成多个,
                   这样就可以用多个map任务去完成。
                   set mapred.reduce.tasks=10;
                   create table a_1 as 
                   select * from a 
                   distribute by rand(123); 
                   
                   这样会将a表的记录,随机的分散到包含10个文件的a_1表中,再用a_1代替上面sql中的a表,则会用10个map任务去完成。
                   每个map任务处理大于12M(几百万记录)的数据,效率肯定会好很多。
    
   看上去,貌似这两种有些矛盾,一个是要合并小文件,一个是要把大文件拆成小文件,这点正是重点需要关注的地方,
   根据实际情况,控制map数量需要遵循两个原则:使大数据量利用合适的map数;使单个map任务处理合适的数据量;

 

二、    控制hive任务的reduce数: 

1.    Hive自己如何确定reduce数: 
reduce个数的设定极大影响任务执行效率,不指定reduce个数的情况下,Hive会猜测确定一个reduce个数,基于以下两个设定:
hive.exec.reducers.bytes.per.reducer(每个reduce任务处理的数据量,默认为1000^3=1G) 
hive.exec.reducers.max(每个任务最大的reduce数,默认为999)
计算reducer数的公式很简单N=min(参数2,总输入数据量/参数1)
即,如果reduce的输入(map的输出)总大小不超过1G,那么只会有一个reduce任务;
如:select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; 
            /group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04 总大小为9G多,因此这句有10个reduce

2.    调整reduce个数方法一: 
调整hive.exec.reducers.bytes.per.reducer参数的值;
set hive.exec.reducers.bytes.per.reducer=500000000; (500M)
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; 这次有20个reduce
         
3.    调整reduce个数方法二; 
set mapred.reduce.tasks = 15;
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;这次有15个reduce

4.    reduce个数并不是越多越好; 
同map一样,启动和初始化reduce也会消耗时间和资源;
另外,有多少个reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;

5.    什么情况下只有一个reduce; 
很多时候你会发现任务中不管数据量多大,不管你有没有设置调整reduce个数的参数,任务中一直都只有一个reduce任务;
其实只有一个reduce任务的情况,除了数据量小于hive.exec.reducers.bytes.per.reducer参数值的情况外,还有以下原因
a)    没有group by的汇总,比如把select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; 写成 select count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04';
这点非常常见,希望大家尽量改写。
b)    用了Order by
c)    有笛卡尔积
通常这些情况下,除了找办法来变通和避免,我暂时没有什么好的办法,因为这些操作都是全局的,所以hadoop不得不用一个reduce去完成;

    同样的,在设置reduce个数的时候也需要考虑这两个原则:使大数据量利用合适的reduce数;使单个reduce任务处理合适的数据量;



已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [map reduce 设定] 推荐:

map和reduce 个数的设定 (Hive优化)经典

- - 研发管理 - ITeye博客
一、    控制hive任务中的map数: . 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);.

基于的Map/Reduce的ItemCF

- - M.J.
ItemCF为基于邻域的方法使用用户共同行为来对Item之间的相似度进行计算,从而利用k-近邻算法使用用户曾经有个行为的Item进行推荐. 好处是系统只需要存储Item x Item的相似度矩阵,对于Item数量远小于用户数量的应用来说,具有很高的性价比. ItemCF最核心的计算为item之间相似度矩阵的计算,同时还需要能够在短时间内响应Item变化情况(用户有行为之后就会造成相似度矩阵的重新计算,实际中不会全部重新计算而会使用增量计算的方式.

hadoop学习(七)WordCount+Block+Split+Shuffle+Map+Reduce技术详解

- - CSDN博客数据库推荐文章
纯干活:通过WourdCount程序示例:详细讲解MapReduce之Block+Split+Shuffle+Map+Reduce的区别及数据处理流程.        Shuffle过程是MapReduce的核心,集中了MR过程最关键的部分. 要想了解MR,Shuffle是必须要理解的. 了解Shuffle的过程,更有利于我们在对MapReduce job性能调优的工作,以及对MR内部机理有更深一步的了解.

map-reduce自定义分组自定义排序

- - 行业应用 - ITeye博客
1 * @author zm * * 当第一列相同时,求出第二列的最小值---> 由要求分析如下: * 1 必然以 row1来进行分组. * 2 必然也是以 row1,row2作为一个整体来进行比较才能有 当第一列相同时,在比较第二列的状态发生 * 3 mr中,执行流程是 -->-->--> *.

第一个完整的Map/Reduce小程序

- - ITeye博客
          从在自己的win7下面装好虚拟机,然后在虚拟机上面安装hadoop,然后再安装hadoop-eclipse插件,过去好像有一个星期了,之前装虚拟机和hadoop都没成功,上个星期解除了封印,一口气把hadoop学习前期的所有的东西都搞定了,接下来就是遥遥无期的hadoop之路.          今天按着别人的思路在win7下面的eclipse里面敲了算是处女作的Map/Reduce程序,虽然很简单,但是自己还是一步一步的走通了,因为hadoop是安装在虚拟机上的,但是eclipse是在win7下面,所以在中间运行的时候会有一系列的错误,昨天晚上把遇到的问题百度的百度,问神的问神,烧香的烧香,基本上都解决了,现在能把程序跑起来,感觉自己的熬夜什么的都没有白费.

JavaScript Source Map 详解

- - 阮一峰的网络日志
上周, jQuery 1.9发布. 这是2.0版之前的最后一个新版本,有很多新功能,其中一个就是支持Source Map. 访问 http://ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.min.js,打开压缩后的版本,滚动到底部,你可以看到最后一行是这样的:.

mapreduce实例-Join连接 (reduce Side Join)

- - CSDN博客云计算推荐文章
//根据连接类型做不同处理. //设置不同map处理不同输入. 外键作为map输出的key,相同的外键值必然落在一个reduce中,在reduce端根据需要做不同形式的连接. 作者:liuzhoulong 发表于2013-9-5 21:35:16 原文链接. 阅读:83 评论:0 查看评论.

Hibernate调优之select new map()

- - CSDN博客架构设计推荐文章
        Hibernate调优不只是设置一下lazy,调整一下由谁来维护这个字段而已.         这次要说的是对查询语句进行优化——select new map().         select new map语句结果说明.         语句一:.         结果list中,每条记录对应一个object数组,object[]中每个元素为hql语句中列的序号(从0开始).

【转载】在Google Map上玩LEGO

- - HTML5研究小组
Google又放出了很帅又充满了Google式小清新风格的HTML5在线游戏,这次和LEGO合作——在Google Map上砌LEGO积木:. 这个游戏不知道是哪个和我一样买不起房的屌丝想出来的,不知道梦见几次在地球上某个有待开荒的土地上占一个山头盖属于自己的房子之后用满腔的热血把它做出来了. 不过貌似只能选择在大洋洲范围内的土地,估计开发者是那边的穷矮矬.

开发基于 Google Map 的 Android 应用

- - 博客 - 伯乐在线
简介: 随着移动互联网应用的迅速发展,利用智能手机提供的实时地理位置信息服务功能扩展出众多 LBS(Location Based Service) 应用,将实时地理位置信息与手机的便捷、移动特性结合,为人们提供多种多样的应用场景,比如实时定位、导航、搜索周围好友、基于地理位置的信息推荐等. 本文通过实例介绍如何开发基于 Google Map 的 Android 应用.