mysql处理海量数据时的一些优化查询速度方法

标签: MySql | 发表时间:2015-07-02 16:54 | 作者:IT江湖
出处:http://www.itjhwd.com

最近一段时间由于工作需要,开始关注针对Mysql数据库的select查询语句的相关优化方法。

由于在参与的实际项目中发现当mysql表的数据量达到百万级时,普通SQL查询效率呈直线下降,而且如果where中的查询条件较多时,其查询速度简直无法容忍。曾经测试对一个包含400多万条记录(有索引)的表执行一条条件查询,其查询时间竟然高达40几秒,相信这么高的查询延时,任何用户都会抓狂。因此如何提高sql语句查询效率,显得十分重要。以下是网上流传比较广泛的30种SQL查询语句优化方法:

1、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

2、对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

3、应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

  select id from t where num is null

可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

  select id from t where num=0

4、尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:

  select id from t where num=10 or num=20

可以这样查询:

  select id from t where num=10
union all
select id from t where num=20

5、下面的查询也将导致全表扫描:(不能前置百分号)

  select id from t where name like ‘�c%’

若要提高效率,可以考虑全文检索。

6、in 和 not in 也要慎用,否则会导致全表扫描,如:

  select id from t where num in(1,2,3)

对于连续的数值,能用 between 就不要用 in 了:

  select id from t where num between 1 and 3

7、如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

  select id from t where num=@num

可以改为强制查询使用索引:

  select id from t with(index(索引名)) where num=@num

8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:

  select id from t where num/2=100

应改为:

  select id from t where num=100*2

9、应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:

  select id from t where substring(name,1,3)=’abc’–name以abc开头的id
select id from t where datediff(day,createdate,’2005-11-30′)=0–’2005-11-30′生成的id

应改为:

  select id from t where name like ‘abc%’
select id from t where createdate>=’2005-11-30′ and createdate<’2005-12-1′

10、不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11、在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使 用,并且应尽可能的让字段顺序与索引顺序相一致。

12、不要写一些没有意义的查询,如需要生成一个空表结构:

  select col1,col2 into #t from t where 1=0

这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:

  create table #t(…)

13、很多时候用 exists 代替 in 是一个好的选择:

  select num from a where num in(select num from b)

用下面的语句替换:

  select num from a where exists(select 1 from b where num=a.num)

14、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段 sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

15、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。

16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

17、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会 逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

18、尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

19、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

20、尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

21、避免频繁创建和删除临时表,以减少系统表资源的消耗。

22、临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使 用导出表。

23、在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

24、如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

25、尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

26、使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

27、与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28、在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

29、尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

30、尽量避免大事务操作,提高系统并发能力。

via: github-qiwsir

相关 [mysql 数据 优化] 推荐:

MySQL数据库优化总结

- - CSDN博客推荐文章
        对于一个以数据为中心的应用,数据库的好坏直接影响到程序的性能,因此数据库性能至关重要. 一般来说,要保证数据库的效率,要做好以下四个方面的工作:数据库设计、sql语句优化、数据库参数配置、恰当的硬件资源和操作系统,这个顺序也表现了这四个工作对性能影响的大小.        一、数据库设计   适度的反范式,注意是适度的.

浅谈MySQL 数据库性能优化

- - BlogJava-qileilove
数据库是 IO 密集型的程序,和其他数据库一样,主要功能就是数据的持久化以及数据的管理. 本文侧重通过优化MySQL 数据库缓存参数如查询缓存,表缓存,. 日志缓存,索引缓存,innodb缓存,插入缓存,以及连接参数等方式来对MySQL数据库进行优化.   这里先引用一句话,从内存中读取一个数据的时间消耗是微秒级别,而从普通硬盘上读取一个数据是在毫秒级别,二者相差3个数量级.

MySQL数据库优化实践

- - OurMySQL
   最近一段时间,我们整理了一些关于Percona,Linux,Flashcache,硬件设备的优化经验,分享给大家:.     1.开启BBWC.    RAID卡都有写cache(Battery Backed Write Cache),写cache对IO性能的提升非常明显,因为掉电会丢失数据,所以必须由电池提供支持.

MySQL数据库优化二三事

- -
平时在开发新项目时,有时因为工期紧张,经常会以实现功能为目标,不太注意效率问题,特别是在SQL语句上. 简单来说是加索引,重建结构,杀进程,杀DBA……如果在一个没有DBA的公司,上线一时爽,事后火葬场,卑微测试一不小心背黑锅. 测试人员也会和数据打交道,今天总结数据库的优化知识. 主要介绍可以从哪些方面优化数据库,提高数据库的执行效率.

MySQL优化之数据库结构:数据对象优化

- - CSDN博客数据库推荐文章
使用PROCEDURE ANALYSE函数优化表的数据类型. 表需要使用何种数据类型,是需要根据应用来判断的. 在MySQL中,可以使用函数PROCEDURE ANALYSE()对当前应用的表进行分析,该函数可以对数据库中列的数据类型提出优化建议,用户可以根据应用的实际情况斟酌考虑是否实施优化. 以下是函数PROCEDURE ANALYSE()的使用方法:.

mysql数据库性能优化的关键参数及mysql服务器优化

- - CSDN博客数据库推荐文章
MySQL数据库性能优化的关键参数. 关键参数一: back_log. 要求 MySQL 能有的连接数量. 当主要MySQL线程在一个很短时间内得到非常多的连接请求,这就起作用,然后主线程花些时间(尽管很短)检查连接并且启动一个新线程. back_log 值指出在MySQL暂时停止回答新请求之前的短时间内多少个请求可以被存在堆栈中.

MySQL 数据库性能优化之缓存参数优化

- flychen50 - Sky.Jian 朝阳的天空
在平时被问及最多的问题就是关于 MySQL 数据库性能优化方面的问题,所以最近打算写一个MySQL数据库性能优化方面的系列文章,希望对初中级 MySQL DBA 以及其他对 MySQL 性能优化感兴趣的朋友们有所帮助. 这是 MySQL数据库性能优化专题 系列的第一篇文章:MySQL 数据库性能优化之缓存参数优化.

MySQL 数据库性能优化之SQL优化

- - OurMySQL
注:这篇文章是以 MySQL 为背景,很多内容同时适用于其他关系型数据库,需要有一些索引知识为基础. IO永远是数据库最容易瓶颈的地方,这是由数据库的职责所决定的,大部分数据库操作中超过90%的时间都是 IO 操作所占用的,减少 IO 次数是. SQL 优化中需要第一优先考虑,当然,也是收效最明显的优化手段.

MySQL数据库性能优化之表结构优化

- - haohtml's blog
由于MySQL数据库是基于行(Row)存储的数据库,而数据库操作 IO 的时候是以 page(block)的方式,也就是说,如果我们每条记录所占用的空间量减小,就会使每个page中可存放的数据行数增大,那么每次 IO 可访问的行数也就增多了. 反过来说,处理相同行数的数据,需要访问的 page 就会减少,也就是 IO 操作次数降低,直接提升性能.

mysql优化

- - 数据库 - ITeye博客
公司网站访问量越来越大,MySQL自然成为瓶颈,因此最近我一直在研究 MySQL  的优化,第一步自然想到的是 MySQL 系统参数的优化,作为一个访问量很大的网站(日20万人次以上)的数据库系统,不可能指望 MySQL  默认的系统参数能够让 MySQL运行得非常顺畅. 在Apache, PHP,  MySQL的体系架构中,MySQL对于性能的影响最大,也是关键的核心部分.