CMS gc实践总结

标签: cms gc 实践 | 发表时间:2015-07-30 12:56 | 作者:gelongmei
出处:http://www.iteye.com
http://blog.csdn.net/turkeyzhou/article/details/5998869
声明:原文转自http://www.blogjava.net/killme2008/archive/2009/09/22/295931.html,该文所有合法权益归原作者所有,仅在此做技术分享使用。

首先感谢阿宝同学的帮助,我才对这个gc算法的调整有了一定的认识,而不是停留在过去仅仅了解的阶段。在读过sun的文档和跟阿宝讨论之后,做个小小的总结。
    CMS,全称Concurrent Low Pause Collector,是jdk1.4后期版本开始引入的新gc算法,在jdk5和jdk6中得到了进一步改进,它的主要适合场景是对响应时间的重要性需求大于对吞吐量的要求,能够承受垃圾回收线程和应用线程共享处理器资源,并且应用中存在比较多的长生命周期的对象的应用。CMS是用于对tenured generation的回收,也就是年老代的回收,目标是尽量减少应用的暂停时间,减少full gc发生的几率,利用和应用程序线程并发的垃圾回收线程来标记清除年老代。在我们的应用中,因为有缓存的存在,并且对于响应时间也有比较高的要求,因此希望能尝试使用CMS来替代默认的server型JVM使用的并行收集器,以便获得更短的垃圾回收的暂停时间,提高程序的响应性。
    CMS并非没有暂停,而是用两次短暂停来替代串行标记整理算法的长暂停,它的收集周期是这样:
    初始标记(CMS-initial-mark) -> 并发标记(CMS-concurrent-mark) -> 重新标记(CMS-remark) -> 并发清除(CMS-concurrent-sweep) ->并发重设状态等待下次CMS的触发(CMS-concurrent-reset)。
    其中的1,3两个步骤需要暂停所有的应用程序线程的。第一次暂停从root对象开始标记存活的对象,这个阶段称为初始标记;第二次暂停是在并发标记之后,暂停所有应用程序线程,重新标记并发标记阶段遗漏的对象(在并发标记阶段结束后对象状态的更新导致)。第一次暂停会比较短,第二次暂停通常会比较长,并且remark这个阶段可以并行标记。

    而并发标记、并发清除、并发重设阶段的所谓并发,是指一个或者多个垃圾回收线程和应用程序线程并发地运行,垃圾回收线程不会暂停应用程序的执行,如果你有多于一个处理器,那么并发收集线程将与应用线程在不同的处理器上运行,显然,这样的开销就是会降低应用的吞吐量。Remark阶段的并行,是指暂停了所有应用程序后,启动一定数目的垃圾回收进程进行并行标记,此时的应用线程是暂停的。

    CMS的young generation的回收采用的仍然是并行复制收集器,这个跟Paralle gc算法是一致的。

    下面是参数介绍和遇到的问题总结,

1、启用CMS:-XX:+UseConcMarkSweepGC。 咳咳,这里犯过一个低级错误,竟然将+号写成了-号

2。CMS默认启动的回收线程数目是  (ParallelGCThreads + 3)/4) ,如果你需要明确设定,可以通过-XX:ParallelCMSThreads=20来设定,其中ParallelGCThreads是年轻代的并行收集线程数

3、CMS是不会整理堆碎片的,因此为了防止堆碎片引起full gc,通过会开启CMS阶段进行合并碎片选项:-XX:+UseCMSCompactAtFullCollection,开启这个选项一定程度上会影响性能,阿宝的blog里说也许可以通过配置适当的CMSFullGCsBeforeCompaction来调整性能,未实践。

4.为了减少第二次暂停的时间,开启并行remark: -XX:+CMSParallelRemarkEnabled,如果remark还是过长的话,可以开启-XX:+CMSScavengeBeforeRemark选项,强制remark之前开始一次minor gc,减少remark的暂停时间,但是在remark之后也将立即开始又一次minor gc。

5.为了避免Perm区满引起的full gc,建议开启CMS回收Perm区选项:

+CMSPermGenSweepingEnabled -XX:+CMSClassUnloadingEnabled

6.默认CMS是在tenured generation沾满68%的时候开始进行CMS收集,如果你的年老代增长不是那么快,并且希望降低CMS次数的话,可以适当调高此值:
-XX:CMSInitiatingOccupancyFraction=80

这里修改成80%沾满的时候才开始CMS回收。

7.年轻代的并行收集线程数默认是(ncpus <= ? ncpus : 3 + ((ncpus * 5) / ,如果你希望设定这个线程数,可以通过-XX:ParallelGCThreads= N 来调整。

8.进入重点,在初步设置了一些参数后,例如:
-server -Xms1536m -Xmx1536m -XX:NewSize=256m -XX:MaxNewSize=256m -XX:PermSize=64m
-XX:MaxPermSize=64m -XX:-UseConcMarkSweepGC -XX:+UseCMSCompactAtFullCollection
-XX:CMSInitiatingOccupancyFraction=80 -XX:+CMSParallelRemarkEnabled
-XX:SoftRefLRUPolicyMSPerMB=0

需要在生产环境或者压测环境中测量这些参数下系统的表现,这时候需要打开GC日志查看具体的信息,因此加上参数:

-verbose:gc -XX:+PrintGCTimeStamps -XX:+PrintGCDetails -Xloggc:/home/test/logs/gc.log

在运行相当长一段时间内查看CMS的表现情况,CMS的日志输出类似这样:
4391.322: [GC [1 CMS-initial-mark: 655374K(1310720K)] 662197K(1546688K), 0.0303050 secs] [Times: user=0.02 sys=0.02, real=0.03 secs]
4391.352: [CMS-concurrent-mark-start]
4391.779: [CMS-concurrent-mark: 0.427/0.427 secs] [Times: user=1.24 sys=0.31, real=0.42 secs]
4391.779: [CMS-concurrent-preclean-start]
4391.821: [CMS-concurrent-preclean: 0.040/0.042 secs] [Times: user=0.13 sys=0.03, real=0.05 secs]
4391.821: [CMS-concurrent-abortable-preclean-start]
4392.511: [CMS-concurrent-abortable-preclean: 0.349/0.690 secs] [Times: user=2.02 sys=0.51, real=0.69 secs]
4392.516: [GC[YG occupancy: 111001 K (235968 K)]4392.516: [Rescan (parallel) , 0.0309960 secs]4392.547: [weak refs processing, 0.0417710 secs] [1 CMS-remark: 655734K(1310720K)] 766736K(1546688K), 0.0932010 secs] [Times: user=0.17 sys=0.00, real=0.09 secs]
4392.609: [CMS-concurrent-sweep-start]
4394.310: [CMS-concurrent-sweep: 1.595/1.701 secs] [Times: user=4.78 sys=1.05, real=1.70 secs]
4394.310: [CMS-concurrent-reset-start]
4394.364: [CMS-concurrent-reset: 0.054/0.054 secs] [Times: user=0.14 sys=0.06, real=0.06 secs]

其中可以看到CMS-initial-mark阶段暂停了0.0303050秒,而CMS-remark阶段暂停了0.0932010秒,因此两次暂停的总共时间是0.123506秒,也就是123毫秒左右。两次短暂停的时间之和在200以下可以称为正常现象。

但是你很可能遇到两种fail引起full gc:Prommotion failed和Concurrent mode failed。

Prommotion failed的日志输出大概是这样:
[ParNew (promotion failed): 320138K->320138K(353920K), 0.2365970 secs]42576.951: [CMS: 1139969K->1120688K(
2166784K), 9.2214860 secs] 1458785K->1120688K(2520704K), 9.4584090 secs]

这个问题的产生是由于救助空间不够,从而向年老代转移对象,年老代没有足够的空间来容纳这些对象,导致一次full gc的产生。解决这个问题的办法有两种完全相反的倾向:增大救助空间、增大年老代或者去掉救助空间。增大救助空间就是调整-XX:SurvivorRatio参数,这个参数是Eden区和Survivor区的大小比值,默认是32,也就是说Eden区是Survivor区的32倍大小,要注意Survivo是有两个区的,因此Surivivor其实占整个young genertation的1/34。调小这个参数将增大survivor区,让对象尽量在survitor区呆长一点,减少进入年老代的对象。去掉救助空间的想法是让大部分不能马上回收的数据尽快进入年老代,加快年老代的回收频率,减少年老代暴涨的可能性,这个是通过将-XX:SurvivorRatio 设置成比较大的值(比如65536)来做到。在我们的应用中,将young generation设置成256M,这个值相对来说比较大了,而救助空间设置成默认大小(1/34),从压测情况来看,没有出现prommotion failed的现象,年轻代比较大,从GC日志来看,minor gc的时间也在5-20毫秒内,还可以接受,因此暂不调整。

Concurrent mode failed的产生是由于CMS回收年老代的速度太慢,导致年老代在CMS完成前就被沾满,引起full gc,避免这个现象的产生就是调小-XX:CMSInitiatingOccupancyFraction参数的值,让CMS更早更频繁的触发,降低年老代被沾满的可能。我们的应用暂时负载比较低,在生产环境上年老代的增长非常缓慢,因此暂时设置此参数为80。在压测环境下,这个参数的表现还可以,没有出现过Concurrent mode failed。


参考资料:
《JDK5.0垃圾收集优化之--Don't Pause》 by 江南白衣
《记一次Java GC调整经历》1,2 by Arbow
Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning
Tuning Garbage Collection with the 5.0 JavaTM Virtual Machine

已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [cms gc 实践] 推荐:

CMS gc实践总结

- - 编程语言 - ITeye博客
声明:原文转自http://www.blogjava.net/killme2008/archive/2009/09/22/295931.html,该文所有合法权益归原作者所有,仅在此做技术分享使用. 首先感谢阿宝同学的帮助,我才对这个gc算法的调整有了一定的认识,而不是停留在过去仅仅了解的阶段. 在读过sun的文档和跟阿宝讨论之后,做个小小的总结.

G1,CMS及PARALLEL GC的比较

- - Java译站
这篇文章正好接上前一年我们做的一次现实环境下不同GC算法性能比较的试验. 这次我们仍然进行同样的试验,不过增加了对G1回收器的测试,并且在多个平台进行测试. 今年我们测试的垃圾回收器有如下几个:. 我们使用现成的 JIRA任务来运行这个测试. 选择它的原因非常简单——除去Minecraft(一款著名网游),愤怒的小鸟,以及Eclipse不说, JIRA应该是最著名的Java应用程序了.

一次CMS GC的调优工作

- - 舒の随想日记
某台机器的内存比较大,之前的JVM参数是4G的堆,在压测过程中发现当QPS上来以后,Full GC会开始抬头,YoungGC的频率就不用说了,比较高. 观察GC日志和jstat -gcutil,感觉是QPS在峰值的时候对象创建比较多,也有大对象产生. 于是打算加大堆的大小来延缓GC的时机,并且有一些GC参数的优化,反复调整后找到了一个适合我们的参数(没有一个best的参数,还是得按照应用的的情况去测量,最好是一遍压测一遍调整,最终找到一个best fit的参数组).

一次CMS GC问题排查过程(理解原理+读懂GC日志)

- - ITeye博客
这个是之前处理过的一个线上问题,处理过程断断续续,经历了两周多的时间,中间各种尝试,总结如下. 1、问题的场景和处理过程;2、GC的一些理论东西;3、看懂GC的日志. 问题场景:线上机器在半夜会推送一个700M左右的数据,这个时候有个数据置换的过程,也就是说有700M*2的数据在heap区域中,线上系统超时比较多,导致了很严重(严重程度就不说了)的问题.

[实践经验+代码]用node.js和express.js和jade搭建轻型cms系统

- zhibin - CNode社区
用node.js+express.js轻型CMS系统第一讲. 我们主要做的是iphone/ipad程序,但关注node.js很久,因为我们多少总是要做网站,做后台. node.js就像一个非常快的ruby. 对于我们而言,其实学习node.js起来还是很简单,网上资料很多,但没有看到一些比较完整的例子.

高吞吐、低延迟 Java 应用的 GC 优化实践

- - IT瘾-dev
“以下信息节选自涤生的翻译内容”. 本篇原文作者是 LinkedIn 的 Swapnil Ghike,这篇文章讲述了 LinkedIn 的 Feed 产品的 GC 优化过程,虽然文章写作于 April 8, 2014,但其中的很多内容和知识点非常有学习和参考意义. 高性能应用构成了现代网络的支柱. LinkedIn 内部有许多高吞吐量服务来满足每秒成千上万的用户请求.

【大内存服务GC实践】- 一文看懂G1GC垃圾回收器

- - 有态度的HBase/Spark/BigData
笔者在这个系列的第一篇文章 《一文看懂”ParNew+CMS”垃圾回收器》中详细介绍了”ParNew+CMS”垃圾回收器的工作原理. 文章最后笔者提到CMS垃圾回收器有两个比较显著的问题,一个是长时间运行无法避免Full GC,一个是Remark阶段STW时间较长. 正是因为这两个问题的存在,CMS垃圾回收器在JDK9被标记弃用,慢慢开始退出历史舞台.

Java GC 调优

- - Darktea
关于 Java GC 已经有很多好的文档了, 比如这些:. 但是这里还是想再重点整理一下 Java GC 日志的格式, 可以作为实战时的备忘录.. 同时也会再整理一下各种概念. 一, JDK 6 提供的各种垃圾收集器. 先整理一下各种垃圾收集器.. 新生代收集器: Serial, ParNew, Parallel Scavenge (MaxGCPauseMillis vs.

如何降低90%Java垃圾回收时间?以阿里HBase的GC优化实践为例

- - 数据库 - ITeye博客
      过去的一年里,我们准备在Ali-HBase上突破这个被普遍认知的痛点,为此进行了深度分析及全面创新的工作,获得了一些比较好的效果. 以蚂蚁风控场景为例,HBase的线上young GC时间从120ms减少到15ms,结合阿里巴巴JDK团队提供的利器——AliGC,进一步在实验室压测环境做到了5ms.

[译]GC专家系列3-GC调优

- - SegmentFault 最新的文章
原文链接: http://www.cubrid.org/blog/dev-platform/how-to-tune-java-garbage-collection/. 本篇是”GC专家系列“的第三篇. 在第一篇 理解Java垃圾回收中我们学习了几种不同的GC算法的处理过程,GC的工作方式,新生代与老年代的区别.