Kafka是如何实现高吞吐率的

标签: kafka | 发表时间:2016-09-05 10:55 | 作者:aoyouzi
出处:http://www.iteye.com

 

Kafka是分布式消息系统,需要处理海量的消息,Kafka的设计是把所有的消息都写入速度低容量大的硬盘,以此来换取更强的存储能力,但实际上,使用硬盘并没有带来过多的性能损失
 
kafka主要使用了以下几个方式实现了超高的吞吐率
 
顺序读写
 
kafka的消息是不断追加到文件中的,这个特性使kafka可以充分利用磁盘的顺序读写性能
 
顺序读写不需要硬盘磁头的寻道时间,只需很少的扇区旋转时间,所以速度远快于随机读写
 
Kafka官方给出了测试数据(Raid-5,7200rpm):
 
顺序 I/O: 600MB/s
 
随机 I/O: 100KB/s
 
零拷贝
先简单了解下文件系统的操作流程,例如一个程序要把文件内容发送到网络
 
这个程序是工作在用户空间,文件和网络socket属于硬件资源,两者之间有一个内核空间
 
在操作系统内部,整个过程为:
在Linux kernel2.2 之后出现了一种叫做"零拷贝(zero-copy)"系统调用机制,就是跳过“用户缓冲区”的拷贝,建立一个磁盘空间和内存的直接映射,数据不再复制到“用户态缓冲区”
 
系统上下文切换减少为2次,可以提升一倍的性能
文件分段
kafka的队列topic被分为了多个区partition,每个partition又分为多个段segment,所以一个队列中的消息实际上是保存在N多个片段文件中
通过分段的方式,每次文件操作都是对一个小文件的操作,非常轻便,同时也增加了并行处理能力
 
批量发送
Kafka允许进行批量发送消息,先将消息缓存在内存中,然后一次请求批量发送出去
 
比如可以指定缓存的消息达到某个量的时候就发出去,或者缓存了固定的时间后就发送出去
 
如100条消息就发送,或者每5秒发送一次
 
这种策略将大大减少服务端的I/O次数
 
数据压缩
Kafka还支持对消息集合进行压缩,Producer可以通过GZIP或Snappy格式对消息集合进行压缩
 
压缩的好处就是减少传输的数据量,减轻对网络传输的压力
 
Producer压缩之后,在Consumer需进行解压,虽然增加了CPU的工作,但在对大数据处理上,瓶颈在网络上而不是CPU,所以这个成本很值得

 

http://it.dataguru.cn/article-9855-1.html



已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [kafka] 推荐:

kafka监控之kafka-run-class.sh

- - 开源软件 - ITeye博客
kafka自带了很多工具类,在源码kafka.tools里可以看到:. 这些类该如何使用呢,kafka的设计者早就为我们考虑到了,在${KAFKA_HOME}/bin下,有很多的脚本,其中有一个kafka-run-class.sh,通过这个脚本,可以调用其中的tools的部分功能,如调用kafka.tools里的ConsumerOffsetChecker.scala,.

闲扯kafka mq

- - 开源软件 - ITeye博客
本文主要讲解关于kafka mq的设计思想及个人理解. 关于kafka的详细信息,大家可以参考官网的文献 http://kafka.apache.org/documentation.html这是一篇相当不错的文章,值得仔细研读. 第一个问题:消息队列(Message Queue)是干嘛用的. 首先,要对消息队列有一个基本的理解.

Kafka优化

- - ITeye博客
配置优化都是修改server.properties文件中参数值. 1.网络和io操作线程配置优化. # broker处理消息的最大线程数. # broker处理磁盘IO的线程数. 一般num.network.threads主要处理网络io,读写缓冲区数据,基本没有io等待,配置线程数量为cpu核数加1.

Kafka Connect简介

- - 鸟窝
Kafka 0.9+增加了一个新的特性 Kafka Connect,可以更方便的创建和管理数据流管道. 它为Kafka和其它系统创建规模可扩展的、可信赖的流数据提供了一个简单的模型,通过 connectors可以将大数据从其它系统导入到Kafka中,也可以从Kafka中导出到其它系统. Kafka Connect可以将完整的数据库注入到Kafka的Topic中,或者将服务器的系统监控指标注入到Kafka,然后像正常的Kafka流处理机制一样进行数据流处理.

kafka consumer group offset

- - 开源软件 - ITeye博客
     kafka0.9及以前版本kafka offset 保存在zookeeper, 因频繁读写zookeeper性能不高;从0.10开始,主题分区offset存储于kafka独立主题中.     管理监控kafka主题及分区offset至关重要,原网上很开源流行工具KafkaOffsetMonitor、kafka-manager,旧版offset保存于zookeeper,kafka consumer无相应API,从kafka0.10.1.1以后提供相应API读取主题分区offset(也可以调用KafkaClient API,kafka管理API由scala语言编写).

Kafka设计解析(二):Kafka High Availability (上)

- -
Kafka在0.8以前的版本中,并不提供High Availablity机制,一旦一个或多个Broker宕机,则宕机期间其上所有Partition都无法继续提供服务. 若该Broker永远不能再恢复,亦或磁盘故障,则其上数据将丢失. 而Kafka的设计目标之一即是提供数据持久化,同时对于分布式系统来说,尤其当集群规模上升到一定程度后,一台或者多台机器宕机的可能性大大提高,对Failover要求非常高.

GitHub - andreas-schroeder/kafka-health-check: Health Check for Kafka Brokers.

- -
At AutoScout24, to keep the OS up to date of our clusters running on AWS, we perform regular in-place rolling updates. As we run immutable servers, we terminate each broker and replace them with fresh EC2 instances (keeping the previous broker ids).

Kafka编程实例

- - CSDN博客云计算推荐文章
    Producer是一个应用程序,它创建消息并发送它们到Kafka broker中. 这些producer在本质上是不同. 比如,前端应用程序,后端服务,代理服务,适配器对于潜在的系统,Hadoop对于的Producer. 这些不同的Producer能够使用不同的语言实现,比如java、C和Python.

kafka集群安装

- - 互联网 - ITeye博客
kafka是LinkedIn开发并开源的一个分布式MQ系统,现在是Apache的一个孵化项目. 在它的主页描述kafka为一个高吞吐量的分布式(能将消息分散到不同的节点上)MQ. 在这片博文中,作者简单提到了开发kafka而不选择已有MQ系统的原因. Kafka仅仅由7000行Scala编写,据了解,Kafka每秒可以生产约25万消息(50 MB),每秒处理55万消息(110 MB).

kafka开发实例

- - 互联网 - ITeye博客
//启动zookeeper server (用&是为了能退出命令行):. //启动kafka server: . 已有 0 人发表留言,猛击->> 这里<<-参与讨论. —软件人才免语言低担保 赴美带薪读研.