如何挖掘Nginx日志中隐藏的金矿?

标签: 运维经验 Nginx日志 | 发表时间:2016-09-13 11:43 | 作者:小码哥
出处:http://www.yunweipai.com
Nginx日志 对很多开发运维人员来说,Nginx日志文件在被删除前可能都不会看上一眼。但实际上,Nginx隐藏了相当丰富的信息,或许其中便蕴含着未知的金矿等你挖掘!

Nginx(读作Engine-X)是现在最流行的负载均衡和反向代理服务器之一。如果你是一名中小微型网站的开发运维人员,很可能像我们一样,仅Nginx每天就会产生上百M甚至数以十G的日志文件。如果没有出什么错误,在被logrotate定期分割并滚动删除以前,这些日志文件可能都不会被看上一眼。

实际上,Nginx日志文件可以记录的信息相当丰富,而且格式可以定制,考虑到`$time_local`请求时间字段几乎必有,这是一个典型的基于文件的时间序列数据库。Nginx日志被删除以前,或许我们可以想想,其中是否蕴含着未知的金矿等待挖掘?

请求访问分析

Nginx中的每条记录是一个单独的请求,可能是某个页面或静态资源的访问,也可能是某个API的调用。通过几条简单的命令,了解一下系统的访问压力:

// 请求总数     
 less main.log | wc -l   
 1080577         
 // 平均每秒的请求数    
less main.log | awk '{sec=substr($4,2,20);reqs++;reqsBySec[sec]++;} END{print reqs/length(reqsBySec)}'    14.0963          
// 峰值每秒请求数   
 less main.log | awk '{sec=substr($4,2,20);requests[sec]++;} END{for(s in requests){printf("%s %s\n", requests[s],s)}}' | sort -nr | head -n 3    
Page Visits  Response Size  Time Spent/req  Moment    
182 10/Apr/2016:12:53:20      
161 10/Apr/2016:12:54:53    
160 10/Apr/2016:10:47:23

请求总数、平均每秒请求数、峰值请求数,可以大体了解系统压力,作为系统扩容、性能及压力测试时的直接参考。查询特定的URL,比如下单页面,了解每天的下单状况,导出CSV格式,或使用可视化工具,更直观地了解一段时间内的请求、下单数据:

Nginx

备注:本文使用awk命令处理,与Nginx日志的格式有关,如果您格式不同,请酌情修改命令。本文所用的Nginx日志格式:

$remote_addr - $remote_user [$time_local] "$request" 
$status  $body_bytes_sent $request_time $upstream_response_time 
$upstream_addr "$http_referer" "$http_user_agent" "$http_x_forwarded_for"';

示例:

42.100.52.XX - - [10/Apr/2016:07:29:58 +0800] "GET /index
 HTTP/1.1" 200 7206 0.092 0.092 "-" "Mozilla/5.0 (iPhone; CPU iPhone OS 
7_1_2 like Mac OS X) AppleWebKit/537.51.2 (KHTML, like Gecko) Mobile/11D257" "-"

流量速率分析

Nginx日志如果开启,除了请求时间,一般会包含响应时间、页面尺寸等字段,据此很容易计算出网络流量、速率。

等等,你可能会有疑问,上面的请求访问分析,这里的流量速率分析,按时间轴画出来,不就是监控系统干的事儿吗,何苦这么麻烦查询Nginx日志?

的确如此,监控系统提供了更实时、更直观的方式。而Nginx日志文件的原始数据,可以从不同维度分析,使用得当,会如大浪淘沙般,发现属于我们的金子。

对一般网站来说,带宽是最珍贵的资源,可能一不小心,某些资源如文件、图片就占用了大量的带宽,执行命令检查一下:

less static.log | awk 'url=$7; requests[url]++;bytes[url]+=$10} 
END{for(url in requests){printf("%sMB %sKB/req %s %s\n", bytes[url] / 
1024 / 1024, bytes[url] /requests[url] / 1024, requests[url], url)}}' | sort -nr | head -n 15

运维人员

备注:Nginx配置文件中日志格式使用了$body_sent_size,指HTTP响应体的大小,如果想查看整个响应的大小,应该使用变量$sent_size。

不出意外,静态资源、图片类(如果还没有放CDN)占据榜首,自然也是优化的重点:是否可以再压缩,某些页面中是否可以用缩略图片代替等。

与之相比,后台调用、API接口等通常消耗更多的CPU资源,按照一贯“先衡量、再优化”的思路,可以根据响应时间大体了解某个URL占用的CPU时间:

less main.log | awk '{url=$7; times[url]++} END{for(url in times){printf("%s %s\n", times[url], url)}}' | sort -nr | more` 

 40404 /page/a?from=index   

 1074 /categories/food   

 572 /api/orders/1234.json

不对,发现一个问题:由于拥有服务号、App、PC浏览器等多种前端,并且使用不规范,URL的格式可能乱七八糟。比如`/page/a`页面,有的带有.html后缀,有的未带,有的请求路径则带有参数;分类页/categories/food带有`slug`等信息;订单、详情或个人中心的URL路径则有`ID`等标记...。

借助sed命令,通过三个方法对URL格式进行归一化处理:去掉所有的参数;去掉`.html`及`.json`后缀;把数字替换为`*`。可以得到更准确的统计结果,:

less main.log | awk '{print $7}' |sed -re 's/(.*)\?.*/\1/g' -e

 's/(.*)\..*/\1/g' -e 's:/[0-9]+:/*:g' | awk '{requests[$1]++;time[$1] 

+=$2} END{for(url in requests){printf("%smin %ss/req %s %s\n", time

 [url] / 60, time[url] /requests[url], requests[url], url)}}' | sort -nr | head -n 50

负载均衡

备注:这里使用了扩展正则表达式,GNU sed的参数为-r,BSD sed的参数为-E。

那些累计占用了更多响应时间的请求,通常也耗用了更多的CPU时间,是性能优化重点照顾的对象。

慢查询分析

“服务号刚推送了文章,有用户反映点开很慢”,你刚端起桌子上的水杯,就听到产品经理的大嗓门从办公室角落呼啸而来。“用户用的什么网络”,你一边问着,一边打开服务号亲自尝试一下。是用户网络环境不好,还是后台系统有了访问压力?是这一个用户慢,还是很多用户都慢?你一边脑子里在翻腾,一边又打开命令行去查看日志。

与PC浏览器相比,微信服务号在网络环境、页面渲染上有较大的掣肘,在缓存策略上也不如APP自如,有时会遇到诡异的问题。如果手里恰好有Nginx日志,能做点什么呢?

考虑一下MySQL数据库,可以打开慢查询功能,定期查找并优化慢查询,与此类似,Nginx日志中的响应时间,不相当于自带慢查询功能嘛。利用这一特性,我们分步进行慢查询分析:

第一步:是不是用户的网络状况不好?根据既往的经验,如果只有少量的请求较慢,而前后其他IP的请求都较快,通常是用户手机或网络状况不佳引起的。最简单的方法,统计慢查询所占比例:

less main.log | awk -v limit=2 '{min=substr($4,2,17);reqs[min] 

++;if($11>limit){slowReqs[min]++}} END{for(m in slowReqs){printf("%s %s %s%s %s\n", m, slowReqs[m]/reqs[m] * 100, "%", slowReqs[m], reqs [m])}}' | more    

10/Apr/2016:12:51 0.367% 7 1905   

 10/Apr/2016:12:52 0.638% 12 1882    

10/Apr/2016:12:53 0.548% 14 2554

慢查询所占比例极低,再根据用户手机型号、访问时间、访问页面等信息看能否定位到指定的请求,结合前后不同用户的请求,就可以确定是否用户的网络状况不好了。

第二步:是不是应用系统的瓶颈?对比应用服务器的返回时间($upstream_response_time字段),与Nginx服务器的处理时间($request_time字段),先快速排查是否某一台服务器抽风。

我们遇到过类似问题,平均响应时间90ms,还算正常,但某台服务器明显变慢,平均响应时间达到了200ms,影响了部分用户的访问体验。

less main.log | awk '{upServer=$13;upTime=$12;if(upServer == "-"){upServer="Nginx"};if(upTime == "-"){upTime=0};upTimes[upServer] +=upTime;count[upServer]++;totalCount++;} END{for(server in upTimes) {printf("%s %s%s %ss %s\n", count[server], count[server]/totalCount * 100, "%", upTimes[server]/count[server], server)}}' | sort -nr

反向代理服务器

不幸,市场部此次推广活动,访问压力增大,所有服务器都在变慢,更可能是应用系统的性能达到了瓶颈。如果此时带宽都没跑满,在硬件扩容之前,考虑优化重点API、缓存、静态化策略吧,达到一个基本的要求:“优化系统,让瓶颈落到带宽上”。

第三步:应用系统没有瓶颈,是带宽的问题?快速查看一下每秒的流量:

less main.log | awk '{second=substr($4,2,20);bytes[second]+=$10;} END{for(s in bytes){printf("%sKB %s\n", bytes[s]/1024, s)}}' | more`    1949.95KB 10/Apr/2016:12:53:15    2819.1KB 10/Apr/2016:12:53:16    3463.64KB 10/Apr/2016:12:53:17    3419.21KB 10/Apr/2016:12:53:18    2851.37KB 10/Apr/2016:12:53:19

峰值带宽接近出口带宽最大值了,幸福的烦恼,利用前面介绍的不同URL的带宽统计,做定向优化,或者加带宽吧。

还能做哪些优化?

SEO团队抱怨优化了那么久,为什么页面索引量和排名上不去。打印出不同爬虫的请求频次($http_user_agent),或者查看某个特定的页面,最近有没有被爬虫爬过:

less main.log | egrep 'spider|bot' | awk '{name=$17;if(index ($15,"spider")>0){name=$15};spiders[name]++} END{for(name in spiders) {printf("%s %s\n",spiders[name], name)}}' | sort -nr

API

数据告诉我们,页面索引量上不去,不一定是某个爬虫未检索到页面,更多的是其他原因。

市场团队要上一个新品并且做促销活动,你建议避开周一周五,因为周三周四的转化率更高:

awk命令

周三、周四的转换率比周末高不少,可能跟平台的发货周期有关,客户周三四下单,希望周末就能收到货,开始快乐的周末。你猜测到用户的心理和期望,连数据一起交市场品团队,期待更好地改善。

这样的例子可以有很多。事实上,上述分析限于Nginx日志,如果有系统日志,并且日志格式定义良好,可以做的事情远不止于此:这是一个时间序列数据库,可以查询IT系统的运行情况,可以分析营销活动的效果,也可以预测业务数据的趋势;这是一个比较小但够用的大数据源,运用你学会的大数据分析方法,也可以像滴滴那样,分并预测不同天气、时间段下不同地区的车辆供需,并作出优化。

几点建议

  1. 规范日志格式。这是很多团队容易忽略的地方,有时候多一个空格会让日志分析的复杂度大为增加。
  2. 无论如何,使用时间戳字段。以时间序列的方式看待日志文件,这也是很多公司把系统日志直接写入到时间序列数据库的原因;
  3. 如有可能,记录以下字段:用户(或者客户端)标识、单次请求标识、应用标识(如果单次请求会走到多个应用)。能够方便地查出用户链路、请求链路,是排查错误请求、分析用户行为的基础;
  4. 关注写的操作。就像业务建模时,需要特别关注具有时标性、状态会发生改变的模型一样,任何写的操作,都应记录到日志系统中。万一某个业务出错,不但可以通过业务模型复演,也可以通过日志系统复演。
  5. 规范URL格式。这一点同样容易遭到忽略,商品详情页面要不要添加"?from=XXX"来源参数?支付页面采用路径标记“payment/alipay”,还是参数标记“/payment?type=alipay”更合适?区别细微但影响不可忽略。

技术团队应该像对待协议一样对待这些规范。仔细定义并严格遵守,相当于拿到了金矿的钥匙。

还需要寻找一个合适的日志分析工具,基于Python、Go、Lua,都有免费的日志分析工具可供使用;想更轻量,准备几条常用的shell脚本,比如作者整理了一些到GitHub的这个项目上(https://github.com/aqingsao/nana);或者基于ELK技术栈,把Nginx访问日志、业务日志统一存储,并通过Kibana进行不同维度的聚合分析,都是不错的办法。

或许你早就使用Nginx日志了,你是怎么使用的,有什么好的方法呢,欢迎一起交流。

文章来源:InfoQ

作者:张晓庆

相关 [nginx 日志 金矿] 推荐:

如何挖掘Nginx日志中隐藏的金矿?

- - 运维派
对很多开发运维人员来说,Nginx日志文件在被删除前可能都不会看上一眼. 但实际上,Nginx隐藏了相当丰富的信息,或许其中便蕴含着未知的金矿等你挖掘. Nginx(读作Engine-X)是现在最流行的负载均衡和反向代理服务器之一. 如果你是一名中小微型网站的开发运维人员,很可能像我们一样,仅Nginx每天就会产生上百M甚至数以十G的日志文件.

nginx日志切割

- - haohtml's blog
nginx的日志文件没有rotate功能. 如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件. 第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志. 在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件.

Nginx 日志滚动

- - Linux - 操作系统 - ITeye博客
Nginx 日志滚动配置. 在linux下配置日志滚动一般都用系统自带的logrotate,但是在之前的使用中发现,如果一个daemon只打开一个日志文件写日志,在logroate的配置文件中使用copytruncate,会有少部分日志丢失. 在对日志要求不是特别严格的情况下这是可行的,但有时候这丢失的几行日志很重要,就需要一个比较严格的日志滚动方法.

nginx cronolog日志分割

- 伟伟 - 高进波博客 - 零起点一步配置你的linux服务器,linux博客,linux教程,web架构 [expanded by feedex.net]
八月 3rd, 2011 Posted in Nginx | 阅读次数: 8 次. nginx cronolog日志分割配置文档,根据下面方法,每小时分割一次NGINX访问日志. cronolog必须在nginx启动前启动,如果是ubuntu,可以将cronolog配置那行写到/etc/init.d/nginx start函数那.

nginx 日志文件切割

- - 企业架构 - ITeye博客
转载: http://www.cnblogs.com/benio/archive/2010/10/13/1849935.html. 偶然发现access.log有21G大,所以将其切割. Nginx 是一个非常轻量的 Web 服务器,体积小、性能高、速度快等诸多优点. 但不足的是也存在缺点,比如其产生的访问日志文件一直就是一个,不会自动地进行切割,如果访问量很大的话,将 导致日志文件容量非常大,不便于管理.

goaccess分析nginx日志

- - C1G军火库
GoAcces是一款实时日志分析工具. 目前,我们可以通过这款软件查看的统计信息有:. 静态web请求,如图片、样式表、脚本等. 支持超大日志(分析速度很快). GoAccess的基本语法如下:. -b – 开启流量统计,如果希望加快分析速度不建议使用该参数. -s – 开启HTTP响应代码统计. -a – 开启用户代理统计.

shell脚本分析nginx日志

- - 互联网 - ITeye博客
以下脚本都是基于上面日志格式的,如果你的日志格式不同需要调整awk后面的参数. 分析日志中的UserAgent. 上面的脚本将分析出日志文件中最多的20个UserAgent. 分析日志中那些IP访问最多. 分析日志中那些Url请求访问次数最多. 已有 0 人发表留言,猛击->> 这里<<-参与讨论.

shell 分析nginx日志 - 简书

- -
通过日志查看当天访问页面排前10的. 通过日志查看当天ip连接数,统计ip地址的总连接数. 通过日志查看当天访问次数最多的10个IP ,只需要在上一个命令后加上head命令. 通过日志查看当天指定ip访问次数过的url和访问次数. 通过日志查看当天访问次数最多的时间段.

Nginx日志分析常用脚本 |

- -
IP相关统计 统计IP访问量(独立ip访问数量). 查看某一时间段的IP访问量(4-5点). 查看访问最频繁的前100个IP. 查询某个IP的详细访问情况,按访问频率排序. 页面访问统计 查看访问最频的页面(TOP100). 查看访问最频的页面([排除php页面】(TOP100). 查看页面访问次数超过100次的页面.

Nginx日志实时监控、排查整理工具 - ngxtop

- - VPS侦探
要实时查看日志文件变动我们首先想到的应该是tail -f /path/to/log,但是这样看网站的访问日志是相当崩溃的,好一点可以写个脚本进行筛选,但是大部分人还是不擅长的,今天 VPS侦探就推荐给大家一个Nginx日志工具: ngxtop. 说起top工具有很多如: iftop、htop、ntop等,今天说的ngxtop功能也毫不逊色,不仅能实时监控Nginx日志的访问还可以对以前的日志进行排查整理.