JVM初探——使用堆外内存减少Full GC

标签: 基础技术 GC JVM | 发表时间:2017-01-18 07:51 | 作者:liuchi1993
出处:http://www.importnew.com

问题: 大部分主流互联网企业线上Server JVM选用了CMS收集器(如Taobao、LinkedIn、Vdian), 虽然CMS可与用户线程并发GC以降低STW时间, 但它也并非十分完美, 尤其是当出现 Concurrent Mode Failure由并行GC转入串行时, 将导致非常长时间的 Stop The World(详细可参考 JVM初探- 内存分配、GC原理与垃圾收集器).

解决: 由 GCIH可以联想到:  将长期存活的对象(如Local Cache)移入堆外内存(off-heap, 又名 直接内存/direct-memory), 从而减少CMS管理的对象数量, 以降低Full GC的次数和频率, 达到提高系统响应速度的目的.


引入

这个idea最初来源于TaobaoJVM对OpenJDK定制开发的GCIH部分(详见 撒迦的分享- JVM定制改进@淘宝), 其中GCIH就是将CMS Old Heap区的一部分划分出来, 这部分内存虽然还在堆内, 但已不被GC所管理. 将长生命周期Java对象放在Java堆外, GC不能管理GCIH内Java对象(GC Invisible Heap):

(图片来源: JVM@Taobao PPT)

  • 这样做有两方面的好处:
    1. 减少GC管理内存:
      由于GCIH会从Old区 “切出”一块, 因此导致GC管理区域变小, 可以明显降低GC工作量, 提高GC效率, 降低Full GC STW时间(且由于这部分内存仍属于堆, 因此其访问方式/速度不变-  不必付出序列化/反序列化的开销).
    2. GCIH内容进程间共享:
      由于这部分区域不再是JVM运行时数据的一部分, 因此GCIH内的对象可供对个JVM实例所共享(如一台Server跑多个MR-Job可共享同一份Cache数据), 这样一台Server也就可以跑更多的VM实例.

(实际测试数据/图示可下载 撒迦分享 PPT).

但是大部分的互联公司不能像阿里这样可以有专门的工程师针对自己的业务特点定制JVM, 因此我们只能”眼馋”GCIH带来的性能提升却无法”享用”. 但通用的JVM开放了接口可直接向操作系统申请堆外内存( ByteBuffer or  Unsafe), 而这部分内存也是GC所顾及不到的, 因此我们可用JVM堆外内存来模拟GCIH的功能(但相比GCIH不足的是需要付出serialize/deserialize的开销).


JVM堆外内存

JVM初探 -JVM内存模型一文中介绍的 Java运行时数据区域中是找不到堆外内存区域的:

因为它并不是JVM运行时数据区的一部分, 也不是Java虚拟机规范中定义的内存区域, 这部分内存区域直接被操作系统管理.
在JDK 1.4以前, 对这部分内存访问没有光明正大的做法: 只能通过反射拿到 Unsafe类, 然后调用 allocateMemory()/freeMemory()来申请/释放这块内存. 1.4开始新加入了NIO, 它引入了一种基于Channel与Buffer的I/O方式, 可以使用Native函数库直接分配堆外内存, 然后通过一个存储在Java堆里面的 DirectByteBuffer对象作为这块内存的引用进行操作,  ByteBuffer提供了如下常用方法来跟堆外内存打交道:

API 描述
static ByteBuffer allocateDirect(int capacity) Allocates a new direct byte buffer.
ByteBuffer put(byte b) Relative put method (optional operation).
ByteBuffer put(byte[] src) Relative bulk put method (optional operation).
ByteBuffer putXxx(Xxx value) Relative put method for writing a Char/Double/Float/Int/Long/Short value (optional operation).
ByteBuffer get(byte[] dst) Relative bulk get method.
Xxx getXxx() Relative get method for reading a Char/Double/Float/Int/Long/Short value.
XxxBuffer asXxxBuffer() Creates a view of this byte buffer as a Char/Double/Float/Int/Long/Short buffer.
ByteBuffer asReadOnlyBuffer() Creates a new, read-only byte buffer that shares this buffer’s content.
boolean isDirect() Tells whether or not this byte buffer is direct.
ByteBuffer duplicate() Creates a new byte buffer that shares this buffer’s content.

下面我们就用通用的JDK API来使用堆外内存来实现一个 local cache.


示例1.: 使用JDK API实现堆外Cache

注: 主要逻辑都集中在方法 invoke()内, 而 AbstractAppInvoker是一个自定义的性能测试框架, 在后面会有详细的介绍.

/**
 * @author jifang
 * @since 2016/12/31 下午6:05.
 */
public class DirectByteBufferApp extends AbstractAppInvoker {

    @Test
    @Override
    public void invoke(Object... param) {
        Map<String, FeedDO> map = createInHeapMap(SIZE);

        // move in off-heap
        byte[] bytes = serializer.serialize(map);
        ByteBuffer buffer = ByteBuffer.allocateDirect(bytes.length);
        buffer.put(bytes);
        buffer.flip();

        // for gc
        map = null;
        bytes = null;
        System.out.println("write down");
        // move out from off-heap
        byte[] offHeapBytes = new byte[buffer.limit()];
        buffer.get(offHeapBytes);
        Map<String, FeedDO> deserMap = serializer.deserialize(offHeapBytes);
        for (int i = 0; i < SIZE; ++i) {
            String key = "key-" + i;
            FeedDO feedDO = deserMap.get(key);
            checkValid(feedDO);

            if (i % 10000 == 0) {
                System.out.println("read " + i);
            }
        }

        free(buffer);
    }

    private Map<String, FeedDO> createInHeapMap(int size) {
        long createTime = System.currentTimeMillis();

        Map<String, FeedDO> map = new ConcurrentHashMap<>(size);
        for (int i = 0; i < size; ++i) {
            String key = "key-" + i;
            FeedDO value = createFeed(i, key, createTime);
            map.put(key, value);
        }

        return map;
    }
}

由JDK提供的堆外内存访问API只能申请到一个类似一维数组的 ByteBuffer, JDK并未提供基于堆外内存的实用数据结构实现(如堆外的 MapSet), 因此想要实现Cache的功能只能在 write()时先将数据 put()到一个堆内的 HashMap, 然后再将整个 Map序列化后 MoveIn DirectMemory, 取缓存则反之. 由于需要在堆内申请 HashMap, 因此可能会导致多次Full GC. 这种方式虽然可以使用堆外内存, 但性能不高、无法发挥堆外内存的优势.
幸运的是开源界的前辈开发了诸如 EhcacheMapDBChronicle Map等一系列优秀的堆外内存框架, 使我们可以在使用简洁API访问堆外内存的同时又不损耗额外的性能.

其中又以Ehcache最为强大, 其提供了in-heap、off-heap、on-disk、cluster四级缓存, 且Ehcache企业级产品( BigMemory Max /  BigMemoryGo)实现的BigMemory也是Java堆外内存领域的先驱.


示例2: MapDB API实现堆外Cache

public class MapDBApp extends AbstractAppInvoker {

    private static HTreeMap<String, FeedDO> mapDBCache;

    static {
        mapDBCache = DBMaker.hashMapSegmentedMemoryDirect()
                .expireMaxSize(SIZE)
                .make();
    }

    @Test
    @Override
    public void invoke(Object... param) {

        for (int i = 0; i < SIZE; ++i) {
            String key = "key-" + i;
            FeedDO feed = createFeed(i, key, System.currentTimeMillis());

            mapDBCache.put(key, feed);
        }

        System.out.println("write down");
        for (int i = 0; i < SIZE; ++i) {
            String key = "key-" + i;
            FeedDO feedDO = mapDBCache.get(key);
            checkValid(feedDO);

            if (i % 10000 == 0) {
                System.out.println("read " + i);
            }
        }
    }
}

结果 & 分析

  • DirectByteBufferApp
 S0     S1     E      O      P     YGC     YGCT    FGC    FGCT     GCT
0.00   0.00   5.22  78.57  59.85     19    2.902    13    7.251   10.153
  • the last one jstat of  MapDBApp
 S0     S1     E      O      P     YGC     YGCT    FGC    FGCT     GCT
0.00   0.03   8.02   0.38  44.46    171    0.238     0    0.000    0.238

运行 DirectByteBufferApp.invoke()会发现有看到很多Full GC的产生, 这是因为HashMap需要一个很大的连续数组, Old区很快就会被占满, 因此也就导致频繁Full GC的产生.
而运行 MapDBApp.invoke()可以看到有一个 DirectMemory持续增长的过程, 但FullGC却一次都没有了.


实验: 使用堆外内存减少Full GC

实验环境

  • java -version
java version "1.7.0_79"
Java(TM) SE Runtime Environment (build 1.7.0_79-b15)
Java HotSpot(TM) 64-Bit Server VM (build 24.79-b02, mixed mode)
  • VM Options
-Xmx512M
-XX:MaxDirectMemorySize=512M
-XX:+PrintGC
-XX:+UseConcMarkSweepGC
-XX:+CMSClassUnloadingEnabled
-XX:CMSInitiatingOccupancyFraction=80
-XX:+UseCMSInitiatingOccupancyOnly
  • 实验数据
    170W条动态(FeedDO).

实验代码

第1组: in-heap、affect by GC、no serialize

  • ConcurrentHashMapApp
public class ConcurrentHashMapApp extends AbstractAppInvoker {

    private static final Map<String, FeedDO> cache = new ConcurrentHashMap<>();

    @Test
    @Override
    public void invoke(Object... param) {

        // write
        for (int i = 0; i < SIZE; ++i) {
            String key = String.format("key_%s", i);
            FeedDO feedDO = createFeed(i, key, System.currentTimeMillis());
            cache.put(key, feedDO);
        }

        System.out.println("write down");
        // read
        for (int i = 0; i < SIZE; ++i) {
            String key = String.format("key_%s", i);
            FeedDO feedDO = cache.get(key);
            checkValid(feedDO);

            if (i % 10000 == 0) {
                System.out.println("read " + i);
            }
        }
    }
}

GuavaCacheApp类似, 详细代码可参考完整项目.


第2组: off-heap、not affect by GC、need serialize

  • EhcacheApp
public class EhcacheApp extends AbstractAppInvoker {

    private static Cache<String, FeedDO> cache;

    static {
        ResourcePools resourcePools = ResourcePoolsBuilder.newResourcePoolsBuilder()
                .heap(1000, EntryUnit.ENTRIES)
                .offheap(480, MemoryUnit.MB)
                .build();

        CacheConfiguration<String, FeedDO> configuration = CacheConfigurationBuilder
                .newCacheConfigurationBuilder(String.class, FeedDO.class, resourcePools)
                .build();

        cache = CacheManagerBuilder.newCacheManagerBuilder()
                .withCache("cacher", configuration)
                .build(true)
                .getCache("cacher", String.class, FeedDO.class);

    }

    @Test
    @Override
    public void invoke(Object... param) {
        for (int i = 0; i < SIZE; ++i) {
            String key = String.format("key_%s", i);
            FeedDO feedDO = createFeed(i, key, System.currentTimeMillis());
            cache.put(key, feedDO);
        }

        System.out.println("write down");
        // read
        for (int i = 0; i < SIZE; ++i) {
            String key = String.format("key_%s", i);
            Object o = cache.get(key);
            checkValid(o);

            if (i % 10000 == 0) {
                System.out.println("read " + i);
            }
        }
    }
}

MapDBApp与前同.


第3组: off-process、not affect by GC、serialize、affect by process communication

  • LocalRedisApp
public class LocalRedisApp extends AbstractAppInvoker {

    private static final Jedis cache = new Jedis("localhost", 6379);

    private static final IObjectSerializer serializer = new Hessian2Serializer();

    @Test
    @Override
    public void invoke(Object... param) {
        // write
        for (int i = 0; i < SIZE; ++i) {
            String key = String.format("key_%s", i);
            FeedDO feedDO = createFeed(i, key, System.currentTimeMillis());

            byte[] value = serializer.serialize(feedDO);
            cache.set(key.getBytes(), value);

            if (i % 10000 == 0) {
                System.out.println("write " + i);
            }
        }

        System.out.println("write down");
        // read
        for (int i = 0; i < SIZE; ++i) {
            String key = String.format("key_%s", i);
            byte[] value = cache.get(key.getBytes());
            FeedDO feedDO = serializer.deserialize(value);
            checkValid(feedDO);

            if (i % 10000 == 0) {
                System.out.println("read " + i);
            }
        }
    }
}

RemoteRedisApp类似, 详细代码可参考下面完整项目.


实验结果

* ConcurrentMap Guava
TTC 32166ms/32s 47520ms/47s
Minor C/T 31/1.522 29/1.312
Full C/T 24/23.212 36/41.751
MapDB Ehcache
TTC 40272ms/40s 30814ms/31s
Minor C/T 511/0.557 297/0.430
Full C/T 0/0.000 0/0.000
LocalRedis NetworkRedis
TTC 176382ms/176s 1h+
Minor C/T 421/0.415 -
Full C/T 0/0.000 -

备注:
- TTC: Total Time Cost 总共耗时
- C/T: Count/Time 次数/耗时(seconds)


结果分析

对比前面几组数据, 可以有如下总结:

  • 将长生命周期的大对象(如cache)移出heap可大幅度降低Full GC次数与耗时;
  • 使用off-heap存储对象需要付出serialize/deserialize成本;
  • 将cache放入分布式缓存需要付出进程间通信/网络通信的成本(UNIX Domain/TCP IP)

附:
off-heap的Ehcache能够跑出比in-heap的HashMap/Guava更好的成绩确实是我始料未及的O(∩_∩)O~, 但确实这些数据和堆内存的搭配导致in-heap的Full GC太多了, 当heap堆开大之后就肯定不是这个结果了. 因此在使用堆外内存降低Full GC前, 可以先考虑是否可以将heap开的更大.


附: 性能测试框架

在main函数启动时, 扫描 com.vdian.se.apps包下的所有继承了 AbstractAppInvoker的类, 然后使用 Javassist为每个类生成一个代理对象: 当 invoke()方法执行时首先检查他是否标注了 @Test注解(在此, 我们借用junit定义好了的注解), 并在执行的前后记录方法执行耗时, 并最终对比每个实现类耗时统计.

  • 依赖
<dependency>
    <groupId>org.apache.commons</groupId>
    <artifactId>commons-proxy</artifactId>
    <version>${commons.proxy.version}</version>
</dependency>
<dependency>
    <groupId>org.javassist</groupId>
    <artifactId>javassist</artifactId>
    <version>${javassist.version}</version>
</dependency>
<dependency>
    <groupId>com.caucho</groupId>
    <artifactId>hessian</artifactId>
    <version>${hessian.version}</version>
</dependency>
<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>${guava.version}</version>
</dependency>
<dependency>
    <groupId>junit</groupId>
    <artifactId>junit</artifactId>
    <version>${junit.version}</version>
</dependency>

启动类:  OffHeapStarter

/**
 * @author jifang
 * @since 2017/1/1 上午10:47.
 */
public class OffHeapStarter {

    private static final Map<String, Long> STATISTICS_MAP = new HashMap<>();

    public static void main(String[] args) throws IOException, IllegalAccessException, InstantiationException {
        Set<Class<?>> classes = PackageScanUtil.scanPackage("com.vdian.se.apps");
        for (Class<?> clazz : classes) {
            AbstractAppInvoker invoker = createProxyInvoker(clazz.newInstance());
            invoker.invoke();

            //System.gc();
        }

        System.out.println("********************* statistics **********************");
        for (Map.Entry<String, Long> entry : STATISTICS_MAP.entrySet()) {
            System.out.println("method [" + entry.getKey() + "] total cost [" + entry.getValue() + "]ms");
        }
    }

    private static AbstractAppInvoker createProxyInvoker(Object invoker) {
        ProxyFactory factory = new JavassistProxyFactory();
        Class<?> superclass = invoker.getClass().getSuperclass();
        Object proxy = factory
                .createInterceptorProxy(invoker, new ProfileInterceptor(), new Class[]{superclass});
        return (AbstractAppInvoker) proxy;
    }

    private static class ProfileInterceptor implements Interceptor {

        @Override
        public Object intercept(Invocation invocation) throws Throwable {
            Class<?> clazz = invocation.getProxy().getClass();
            Method method = clazz.getMethod(invocation.getMethod().getName(), Object[].class);

            Object result = null;
            if (method.isAnnotationPresent(Test.class)
                    && method.getName().equals("invoke")) {

                String methodName = String.format("%s.%s", clazz.getSimpleName(), method.getName());
                System.out.println("method [" + methodName + "] start invoke");

                long start = System.currentTimeMillis();
                result = invocation.proceed();
                long cost = System.currentTimeMillis() - start;

                System.out.println("method [" + methodName + "] total cost [" + cost + "]ms");

                STATISTICS_MAP.put(methodName, cost);
            }

            return result;
        }
    }
}
  • 包扫描工具: PackageScanUtil
public class PackageScanUtil {

    private static final String CLASS_SUFFIX = ".class";

    private static final String FILE_PROTOCOL = "file";

    public static Set<Class<?>> scanPackage(String packageName) throws IOException {

        Set<Class<?>> classes = new HashSet<>();
        String packageDir = packageName.replace('.', '/');
        Enumeration<URL> packageResources = Thread.currentThread().getContextClassLoader().getResources(packageDir);
        while (packageResources.hasMoreElements()) {
            URL packageResource = packageResources.nextElement();

            String protocol = packageResource.getProtocol();
            // 只扫描项目内class
            if (FILE_PROTOCOL.equals(protocol)) {
                String packageDirPath = URLDecoder.decode(packageResource.getPath(), "UTF-8");
                scanProjectPackage(packageName, packageDirPath, classes);
            }
        }

        return classes;
    }

    private static void scanProjectPackage(String packageName, String packageDirPath, Set<Class<?>> classes) {

        File packageDirFile = new File(packageDirPath);
        if (packageDirFile.exists() && packageDirFile.isDirectory()) {

            File[] subFiles = packageDirFile.listFiles(new FileFilter() {
                @Override
                public boolean accept(File pathname) {
                    return pathname.isDirectory() || pathname.getName().endsWith(CLASS_SUFFIX);
                }
            });

            for (File subFile : subFiles) {
                if (!subFile.isDirectory()) {
                    String className = trimClassSuffix(subFile.getName());
                    String classNameWithPackage = packageName + "." + className;

                    Class<?> clazz = null;
                    try {
                        clazz = Class.forName(classNameWithPackage);
                    } catch (ClassNotFoundException e) {
                        // ignore
                    }
                    assert clazz != null;

                    Class<?> superclass = clazz.getSuperclass();
                    if (superclass == AbstractAppInvoker.class) {
                        classes.add(clazz);
                    }
                }
            }
        }
    }

    // trim .class suffix
    private static String trimClassSuffix(String classNameWithSuffix) {
        int endIndex = classNameWithSuffix.length() - CLASS_SUFFIX.length();
        return classNameWithSuffix.substring(0, endIndex);
    }
}

注: 在此仅扫描 项目目录下的 单层目录的class文件, 功能更强大的包扫描工具可参考spring源代码或 Touch源代码中的 PackageScanUtil.


AppInvoker基类:  AbstractAppInvoker

提供通用测试参数 & 工具函数.

public abstract class AbstractAppInvoker {

    protected static final int SIZE = 170_0000;

    protected static final IObjectSerializer serializer = new Hessian2Serializer();

    protected static FeedDO createFeed(long id, String userId, long createTime) {

        return new FeedDO(id, userId, (int) id, userId + "_" + id, createTime);
    }

    protected static void free(ByteBuffer byteBuffer) {
        if (byteBuffer.isDirect()) {
            ((DirectBuffer) byteBuffer).cleaner().clean();
        }
    }

    protected static void checkValid(Object obj) {
        if (obj == null) {
            throw new RuntimeException("cache invalid");
        }
    }

    protected static void sleep(int time, String beforeMsg) {
        if (!Strings.isNullOrEmpty(beforeMsg)) {
            System.out.println(beforeMsg);
        }

        try {
            Thread.sleep(time);
        } catch (InterruptedException ignored) {
            // no op
        }
    }

    /**
     * 供子类继承 & 外界调用
     *
     * @param param
     */
    public abstract void invoke(Object... param);
}

序列化/反序列化接口与实现

public interface IObjectSerializer {

    <T> byte[] serialize(T obj);

    <T> T deserialize(byte[] bytes);
}
public class Hessian2Serializer implements IObjectSerializer {

    private static final Logger LOGGER = LoggerFactory.getLogger(Hessian2Serializer.class);

    @Override
    public <T> byte[] serialize(T obj) {
        if (obj != null) {
            try (ByteArrayOutputStream os = new ByteArrayOutputStream()) {

                Hessian2Output out = new Hessian2Output(os);
                out.writeObject(obj);
                out.close();
                return os.toByteArray();

            } catch (IOException e) {
                LOGGER.error("Hessian serialize error ", e);
                throw new CacherException(e);
            }
        }
        return null;
    }

    @SuppressWarnings("unchecked")
    @Override
    public <T> T deserialize(byte[] bytes) {
        if (bytes != null) {
            try (ByteArrayInputStream is = new ByteArrayInputStream(bytes)) {

                Hessian2Input in = new Hessian2Input(is);
                T obj = (T) in.readObject();
                in.close();

                return obj;

            } catch (IOException e) {
                LOGGER.error("Hessian deserialize error ", e);
                throw new CacherException(e);
            }
        }
        return null;
    }
}

完整项目地址:  https://github.com/feiqing/off-heap-tester.git.


GC统计工具

#!/bin/bash

pid=`jps | grep $1 | awk '{print $1}'`
jstat -gcutil ${pid} 400 10000
  • 使用
    sh jstat-uti.sh ${u-main-class}

附加: 为什么在实验中in-heap cache的Minor GC那么少?
现在我还不能给出一个确切地分析答案, 有的同学说是因为CMS Full GC会连带一次Minor GC, 而用 jstat会直接计入Full GC, 但查看详细的GC日志也并未发现什么端倪. 希望有了解的同学可以在下面评论区可以给我留言, 再次先感谢了O(∩_∩)O~.


相关文章

相关 [jvm 内存 full] 推荐:

JVM初探——使用堆外内存减少Full GC

- - ImportNew
GCIH可以联想到:  将长期存活的对象(如Local Cache)移入堆外内存(off-heap, 又名. 直接内存/direct-memory), 从而减少CMS管理的对象数量, 以降低Full GC的次数和频率, 达到提高系统响应速度的目的.. 这个idea最初来源于TaobaoJVM对OpenJDK定制开发的GCIH部分(详见 撒迦的分享- JVM定制改进@淘宝), 其中GCIH就是将CMS Old Heap区的一部分划分出来, 这部分内存虽然还在堆内, 但已不被GC所管理.

FULL GC有可能导致JVM暂停1分钟以上吗?

- - 高级语言虚拟机
作者: qianhd . 链接: http://hllvm.group.iteye.com/group/topic/28745 . 发表时间: 2011年12月30日. 声明:本文系ITeye网站发布的原创文章,未经作者书面许可,严禁任何网站转载本文,否则必将追究法律责任. 与另外个程序交互有个心跳检测, 15s/次, 31s没有收到心跳检测的返回消息就认为连接断了,.

JVM内存分配

- - 移动开发 - ITeye博客
计算机内存,它算是CPU与计算机打交道最频繁的区域,所有数据都是先经过硬盘至内存,然后由CPU再从内存中获取数据进行处理,又将数据保存到内存,通过分页或分片技术将内存中的数据再flush至硬盘. 那JVM的内存结构到底是如何呢. JVM做为一个运行在操作系统上,但又独立于os运行的平台,它的内存至少应该包括象寄存器、堆栈等区域.

jvm内存映像分析

- - ITeye博客
     jdk自带的jmap就是java内存映像工具,可以用于上生成堆转储快照:. 在eclipse中启动一个java类,打开jdk安装目录下的C:\Program Files\Java\jdk1.6.0_11\bin目录,双击jconsole.exe,显示连接窗口:.  ,单击pid为6920的选项,点连接进入,可以看到jvm运行时的多种参数,.

JVM内存的调优

- - ITeye博客
默认的 java 虚拟机的大小比较小,在对大数据进行处理时 java 就会报错: java.lang.OutOfMemoryError. 设置 jvm 内存的方法,对于单独的 .class ,可以用下面的方法对 Test 运行时的 jvm 内存进行设置. -Xms 是设置内存初始化的大小. -Xmx 是设置最大能够使用内存的大小(最好不要超过物理内存大小).

MAT JVM内存分析

- - 开源软件 - ITeye博客
我们使用的是 Eclipse Memory Analyzer V0.8,Sun JDK 6. 和其他插件的安装非常类似,MAT 支持两种安装方式,一种是“单机版“的,也就是说用户不必安装 Eclipse IDE 环境,MAT 作为一个独立的 Eclipse RCP 应用运行;另一种是”集成版“的,也就是说 MAT 也可以作为 Eclipse IDE 的一部分,和现有的开发平台集成.

[译] HotSpot JVM 内存管理

- - IT瘾-dev
HotSpot JVM 内存管理. 更新时间:2018-03-28. 关于 JVM 内存管理或者说垃圾收集,大家可能看过很多的文章了,笔者准备给大家总结下. 这算是系列的第一篇,接下来一段时间会持续更新. 本文主要是翻译《 Memory Management in the Java HotSpot Virtual Machine》白皮书的前四章内容,这是 2006 的老文章了,当年发布这篇文章的还是 Sun Microsystems,以后应该会越来越少人记得这家曾经无比伟大的公司了.

【JVM】HotSpot JVM内存管理和GC策略总结

- - ITeye博客
JVM的相关知识是学习java高级特性必须要去深入学习的. 平时也有一些学习和实践,不过总结比较少. 今天有时间总结一下最基础的内存模型和GC策略的知识,在此记录一下. hotspot jvm内存模型. hotspot的内存模型很多地方都有类似总结,我也简单总结了一下,大概可以用下图表示:. 1.线程栈:线程创建是会为每个线程创建一个线程栈,线程栈里面会为每个方法调用创建一个栈帧.

java 内存移到堆外!!! Jvm gcih 淘宝优化JVM实践

- - CSDN博客互联网推荐文章
出自Jvm  GC-Invisible Heap. GC-Invisible Heap,简称GCIH,是一种将Java对象从Java堆内移动到堆外,并且可以在JVM间共享这些对象的技术. GCIH顾名思义就是GC访问不到的堆,它是对JVM内存管理机制的一个有益的补充. 在某些特殊的应用中有大量生命周期很长的对象,在应用运行的整个过程中它们都存在,不需要被GC回收.

JVM内存管理学习总结(一)

- - CSDN博客互联网推荐文章
I.JVM进程的生命周期. JVM实例的生命周期和java程序的生命周期保持一致,即一个新的程序启动则产生一个新的JVM进程实例,程序结束则JVM进程实例伴随着消失. 那么程序启动和程序终止就是JVM实例生命周期的两个边界,两个边界点可以这么理解:一个拥有程序入口(main函数)的class在执行main方法时,相应的JVM就被创建了(即JVM生命周期的起点),当由此main函数启动的所有非守护线程都终止时,JVM即退出(JVM实例生命周期的终点).