超时,重试,熔断,限流

标签: dev | 发表时间:2017-03-08 08:00 | 作者:
出处:http://itindex.net/admin/pagedetail


1 写在前面


1.1 名词解释

consumer表示服务调用方 

provider标示服务提供方,dubbo里面一般就这么讲。

下面的A调用B服务,一般是泛指调用B服务里面的一个接口。


1.2 拓扑图

大写字母表示不同的服务,后面的序号表示同一个服务部署在不同机器的实例。


2 从微观角度思考


2.1 超时(timeout)

在接口调用过程中,consumer调用provider的时候,provider在响应的时候,有可能会慢,如果provider 10s响应,那么consumer也会至少10s才响应。如果这种情况频度很高,那么就会整体降低consumer端服务的性能。

这种响应时间慢的症状,就会像一层一层波浪一样,从底层系统一直涌到最上层,造成整个链路的超时。

所以,consumer不可能无限制地等待provider接口的返回,会设置一个时间阈值,如果超过了这个时间阈值,就不继续等待。

这个超时时间选取,一般看provider正常响应时间是多少,再追加一个buffer即可。


2.2 重试(retry)

超时时间的配置是为了保护服务,避免consumer服务因为provider 响应慢而也变得响应很慢,这样consumer可以尽量保持原有的性能。

但是也有可能provider只是偶尔抖动,那么超时后直接放弃,不做后续处理,就会导致当前请求错误,也会带来业务方面的损失。

那么,对于这种偶尔抖动,可以在超时后重试一下,重试如果正常返回了,那么这次请求就被挽救了,能够正常给前端返回数据,只不过比原来响应慢一点。

重试时的一些细化策略:

重试可以考虑切换一台机器来进行调用,因为原来机器可能由于临时负载高而性能下降,重试会更加剧其性能问题,而换一台机器,得到更快返回的概率也更大一些。


2.2.1 幂等(idempotent)

如果允许consumer重试,那么provider就要能够做到幂等。

即,同一个请求被consumer多次调用,对provider产生的影响(这里的影响一般是指某些写入相关的操作) 是一致的。

而且这个幂等应该是服务级别的,而不是某台机器层面的,重试调用任何一台机器,都应该做到幂等。


2.3 熔断(circuit break)

重试是为了应付偶尔抖动的情况,以求更多地挽回损失。

可是如果provider持续的响应时间超长呢?

如果provider是核心路径的服务,down掉基本就没法提供服务了,那我们也没话说。 如果是一个不那么重要的服务,却因为这个服务一直响应时间长导致consumer里面的核心服务也拖慢,那么就得不偿失了。

单纯超时也解决不了这种情况了,因为一般超时时间,都比平均响应时间长一些,现在所有的打到provider的请求都超时了,那么consumer请求provider的平均响应时间就等于超时时间了,负载也被拖下来了。

而重试则会加重这种问题,使consumer的可用性变得更差。

因此就出现了熔断的逻辑,也就是,如果检查出来频繁超时,就把consumer调用provider的请求,直接短路掉,不实际调用,而是直接返回一个mock的值。

等provider服务恢复稳定之后,重新调用。


2.3.1 简单的熔断处理逻辑

可以参考Netflix开源出来的Hystrix的代码。


2.4 限流(current limiting)

上面几个策略都是consumer针对provider出现各种情况而设计的。

而provider有时候也要防范来自consumer的流量突变问题。

这样一个场景,provider是一个核心服务,给N个consumer提供服务,突然某个consumer抽风,流量飙升,占用了provider大部分机器时间,导致其他可能更重要的consumer不能被正常服务。

所以,provider端,需要根据consumer的重要程度,以及平时的QPS大小,来给每个consumer设置一个流量上线,同一时间内只会给A consumer提供N个线程支持,超过限制则等待或者直接拒绝。


2.4.1 资源隔离

provider可以对consumer来的流量进行限流,防止provider被拖垮。 

同样,consumer 也需要对调用provider的线程资源进行隔离。 这样可以确保调用某个provider逻辑不会耗光整个consumer的线程池资源。


2.4.2 服务降级

降级服务既可以代码自动判断,也可以人工根据突发情况切换。


2.4.2.1 consumer 端

consumer 如果发现某个provider出现异常情况,比如,经常超时(可能是熔断引起的降级),数据错误,这是,consumer可以采取一定的策略,降级provider的逻辑,基本的有直接返回固定的数据。


2.4.2.2 provider 端

当provider 发现流量激增的时候,为了保护自身的稳定性,也可能考虑降级服务。 

比如,1,直接给consumer返回固定数据,2,需要实时写入数据库的,先缓存到队列里,异步写入数据库。



3 从宏观角度重新思考

宏观包括比A -> B 更复杂的长链路。

长链路就是 A -> B -> C -> D这样的调用环境。

而且一个服务也会多机部署,A 服务实际会存在 A1,A2,A3 …

微观合理的问题,宏观未必合理。

下面的一些讨论,主要想表达的观点是:如果系统复杂了,系统的容错配置要整体来看,整体把控,才能做到更有意义。


3.1 超时

如果A给B设置的超时时间,比B给C设置的超时时间短,那么肯定不合理把,A超时时间到了直接挂断,B对C支持太长超时时间没意义。

R表示服务consumer自身内部逻辑执行时间,TAB表示consumer A开始调用provider B到返回的时间 。

那么那么TAB > RB + TBC 才对。


3.2 重试

重试跟超时面临的问题差不多。

B服务一般100ms返回,所以A就给B设置了110ms的超时,而B设置了对C的一次重试,最终120ms正确返回了,但是A的超时时间比较紧,所以B对C的重试被白白浪费了。

A也可能对B进行重试,但是由于上一条我们讲到的,可能C确实性能不好,每次B重试一下就OK,但是A两次重试其实都无法正确的拿到结果。

N标示设置的重试次数

修正一下上面section的公式,TAB > RB+TBC * N。

虽然这个公式本身没什么问题,但是,如果站在长链路的视角来思考,我们需要整体规划每个服务的超时时间和重试次数,而不是仅仅公式成立即可。

比如下面情况:

A -> B -> C。

RB = 100ms,TBC=10ms

B是个核心服务,B的计算成本特别大,那么A就应该尽量给B长一点的超时时间,而尽量不要重试调用B,而B如果发现C超时了,B可以多调用几次C,因为重试C成本小,而重试B成本则很高。 so …


3.3 熔断

A -> B -> C,如果C出现问题了,那么B熔断了,则A就不用熔断了。


3.4 限流

B只允许A以QPS<=5的流量请求,而C却只允许B以QPS<=3的qps请求,那么B给A的设定就有点大,上游的设置依赖下游。

而且限流对QPS的配置,可能会随着服务加减机器而变化,最好是能在集群层面配置,自动根据集群大小调整。


3.5 服务降级

服务降级这个问题,如果从整体来操作,

1,一定是先降级优先级地的接口,两权相害取其轻 

2,如果服务链路整体没有性能特别差的点,比如就是外部流量突然激增,那么就从外到内开始降级。 

3如果某个服务能检测到自身负载上升,那么可以从这个服务自身做降级。


3.6 涟漪

A -> B -> C,如果C服务出现抖动,而B没有处理好这个抖动,造成B服务也出现了抖动,A调用B的时候,也会出现服务抖动的情况。

这个暂时的不可用状态就想波浪一样从底层传递到了上层。

所以,从整个体系的角度来看,每个服务一定要尽量控制住自己下游服务的抖动,不要让整个体系跟着某个服务抖动。


3.7 级联失败(cascading failure)

系统中有某个服务出现故障,不可用,传递性地导致整个系统服务不可用的问题。

跟上面涟漪(自造词)的区别也就是严重性的问题。

涟漪描述服务偶发的不稳定层层传递,而级联失败基本是导致系统不可用。 一般,前者可能会因为短时间内恢复而未引起重视,而后者一般会被高度重视。


3.8 关键路径

关键路径就是,你的服务想正常工作,必须要完整依赖的下游服务链,比如数据库一般就是关键路径里面的一个节点。

尽量减少关键路径依赖的数量,是提高服务稳定性的一个措施。

数据库一般在服务体系的最底层,如果你的服务可以会自己完整缓存使用的数据,解除数据库依赖,那么数据库挂掉,你的服务就暂时是安全的。


3.9 最长路径

想要优化你的服务的响应时间,需要看服务调用逻辑里面的最长路径,只有缩短最长时间路径的用时,才能提高你的服务的性能。



相关 [dev ] 推荐:

隔离术之使用 Hystrix 实现隔离

- - IT瘾-dev
本篇摘自《亿级流量网站架构核心技术》第三章 隔离术 部分内容,全文. 商品详情页系统的Servlet3异步化实践. Hystrix是Netflix开源的一款针对分布式系统的延迟和容错库,目的是用来隔离分布式服务故障. 它提供线程和信号量隔离,以减少不同服务之间资源竞争带来的相互影响;提供优雅降级机制;提供熔断机制使得服务可以快速失败,而不是一直阻塞等待服务响应,并能从中快速恢复.

从 Google 白皮书看企业安全最佳实践

- - IT瘾-dev
前不久Google发布了一份安全方面的白皮书. Google Infrastructure Security Design Overview,直译的版本可以参考“网路冷眼”这版《 Google基础设施安全设计概述》,直译+点评的版本可以参考“职业欠钱”的《 Google基础设施安全设计概述翻译和导读》.

日活 8000 万的王者荣耀,腾讯是如何打造这款产品?

- - IT瘾-dev
在公车上,在地铁上,在公司饭后,在春节回家同学聚会的这些生活场景,随处可见有人在玩王者荣耀. 王者荣耀作为一款优质的产品,你有没有想过,腾讯是如何打造这款产品. 你有没有想过王者荣耀是如何流行起来的. 王者荣耀很火,日活超5000万. 记得在春节回家的大巴上,我掏起手机打开了王者荣耀,正准备找些乐子.

分区表场景下的 SQL 优化

- - IT瘾-dev
有个表做了分区,每天一个分区. 该表上有个查询,经常只查询表中某一天数据,但每次都几乎要扫描整个分区的所有数据,有什么办法进行优化吗. 有一个大表,每天产生的数据量约100万,所以就采用表分区方案,每天一个分区. 该表上经常发生下面的慢查询:. 想要优化一个SQL,一般来说就是先看执行计划,观察 是否尽可能用到索引,同时要关注 预计扫描的行数,以及 是否产生了临时表(Using temporary) 或者  是否需要进行排序(Using filesort),想办法消除这些情况.

微信高可用分布式数据库 PhxSQL 设计与实现

- - IT瘾-dev
“本文详细描述了PhxSQL的设计与实现. 从MySQL的容灾缺陷开始讲起,接着阐述实现高可用强一致的思路,然后具体分析每个实现环节要注意的要点和解决方案,最后展示了PhxSQL在容灾和性能上的成果. 互联网应用中账号和金融类关键系统要求和强调强一致性及高可用性. 当面临机器损坏、网络分区、主备手工或者自动切换时,传统的MySQL主备难以保证强一致性和高可用性.

[译] Android 开发最佳实践

- - IT瘾-dev
Android 开发最佳实践. 从 Futurice公司Android开发者中学到的经验. 遵循以下准则,避免重复发明轮子. 若你对开发iOS或Windows Phone 有兴趣, 请看. iOS Good Practices和. Windows client Good Practices这两篇文章.

[译] 使用 APK Analyzer 分析你的 APK

- - IT瘾-dev
本文来自“天天P图攻城狮”公众号(ttpic_dev). 本文是对 《Analyze Your Build with APK Analyzer》 的翻译. Android Studio 2.2包含了APK Analyzer,通过它我们能够直观地看到APK的组成. 使用APK Analyzer不仅能够减少你花在debug上的时间,而且还能减少你的APK大小.

[译] 普通程序员如何向人工智能靠拢?

- - IT瘾-dev
「范式大学推荐课程」第 4 篇文章:普通程序员如何向人工智能靠拢. 相信看到这篇文章的朋友,几乎都想成为机器学习科学家. 事实上,绝大多数的付费课程,基本上都有完全免费的课程放在另一个地方. 我们只是把这些信息整理好,告诉你在哪儿可以找到他们,以及通过什么样的顺序进行学习. 这样,哪怕你是还没毕业的大学生,或者是初入职场的工程师,都可以通过自学的方式掌握机器学习科学家的基础技能,并在论文、工作甚至日常生活中快速应用.

人脸检测与识别的趋势与再分析

- - IT瘾-dev
最近因为种种原因,这方面的知识有得到大家的认可和对其有很大的兴趣,所以今天想再一次分享这知识,让已明白的人更加深入理解,让初学者有一个好的开端与认知,谢谢大家的支持. 现在打开谷*公司的搜索器,输入 “face detect”,估计大家都能够想到,都是五花八门的大牛文章,我是羡慕啊. (因为里面没有我的一篇,我们实验室的原因,至今没有让我发一篇有点权威的文章,我接下来会写4张4A纸的检讨,去自我检讨下为什么.

日处理 20 亿数据,实时用户行为服务系统架构实践

- - IT瘾-dev
携程实时用户行为服务作为基础服务,目前普遍应用在多个场景中,比如猜你喜欢(携程的推荐系统)、动态广告、用户画像、浏览历史等等. 以猜你喜欢为例,猜你喜欢为应用内用户提供潜在选项,提高成交效率. 旅行是一项综合性的需求,用户往往需要不止一个产品. 作为一站式的旅游服务平台,跨业务线的推荐,特别是实时推荐,能实际满足用户的需求,因此在上游提供打通各业务线之间的用户行为数据有很大的必要性.