大数据时代--Hive技术原理解析

标签: 大数据 时代 hive | 发表时间:2017-05-12 10:33 | 作者:
出处:http://m635674608.iteye.com

本文旨在讲解 Hive的运行原理,帮助使用者更好的了解在使用的过程中它做了些什么工作,深入的理解他的工作机制,提高开发人员理论层面的知识。后面会逐渐推出Hive使用、 Hbase原理与使用等 大数据专题类文章,敬请关注。

什么是Hive?

       Hive是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 HQL,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。
Hive 构建在基于静态批处理的Hadoop 之上,Hadoop 通常都有较高的延迟并且在作业提交和调度的时候需要大量的开销。因此,Hive 并不能够在大规模数据集上实现低延迟快速的查询,例如,Hive 在几百MB 的数据集上执行查询一般有分钟级的时间延迟。
Hive 并不适合那些需要低延迟的应用,例如,联机事务处理(OLTP)。Hive 查询操作过程严格遵守Hadoop MapReduce 的作业执行模型,Hive 将用户的HiveQL 语句通过解释器转换为MapReduce 作业提交到Hadoop 集群上,Hadoop 监控作业执行过程,然后返回作业执行结果给用户。Hive 并非为联机事务处理而设计,Hive 并不提供实时的查询和基于行级的数据更新操作。Hive 的最佳使用场合是大数据集的批处理作业,例如,网络日志分析。

Hive与Hadoop

       Hive的执行入口是Driver,执行的SQL语句首先提交到Drive驱动,然后调用compiler解释驱动,最终解释成MapReduce任务去执行。

Hive的服务端组件

1. Driver组件:该组件包括:Compiler、Optimizer、Executor,它可以将Hive的编译、解析、优化转化为MapReduce任务提交给Hadoop1中的JobTracker或者是Hadoop2中的SourceManager来进行实际的执行相应的任务。
 
2. MetaStore组件:存储着hive的元数据信息,将自己的元数据存储到了关系型数据库当中,支持的数据库主要有:Mysql、Derby、支持把metastore独立出来放在远程的集群上面,使得hive更加健壮。元数据主要包括了表的名称、表的列、分区和属性、表的属性(是不是外部表等等)、表的数据所在的目录。
 
3. 用户接口:CLI(Command Line Interface)(常用的接口:命令行模式)、Client:Hive的客户端用户连接至Hive Server ,在启动Client的时候,需要制定Hive Server所在的节点,并且在该节点上启动Hive Server、WUI:通过浏览器的方式访问Hive。

Hive的工作原理

如图:

 
流程大致步骤为:
1. 用户提交查询等任务给Driver。
2. 编译器获得该用户的任务Plan。
3. 编译器Compiler根据用户任务去MetaStore中获取需要的Hive的元数据信息。
4. 编译器Compiler得到元数据信息,对任务进行编译,先将HiveQL转换为抽象语法树,然后将抽象语法树转换成查询块,将查询块转化为逻辑的查询计划,重写逻辑查询计划,将逻辑计划转化为物理的计划(MapReduce), 最后选择最佳的策略。
5. 将最终的计划提交给Driver。
6. Driver将计划Plan转交给ExecutionEngine去执行,获取元数据信息,提交给JobTracker或者SourceManager执行该任务,任务会直接读取HDFS中文件进行相应的操作。
7. 获取执行的结果。
8. 取得并返回执行结果。
 
创建表时:
解析用户提交的Hive语句-->对其进行解析-->分解为表、字段、分区等Hive对象。根据解析到的信息构建对应的表、字段、分区等对象,从SEQUENCE_TABLE中获取构建对象的最新的ID,与构建对象信息(名称、类型等等)一同通过DAO方法写入元数据库的表中,成功后将SEQUENCE_TABLE中对应的最新ID+5.实际上常见的RDBMS都是通过这种方法进行组织的,其系统表中和Hive元数据一样显示了这些ID信息。通过这些元数据可以很容易的读取到数据。

Hive编译过程

基本流程为:将HiveQL转化为抽象语法树再转为查询块然后转为逻辑查询计划再转为物理查询计划最终选择最佳决策的过程。
 
优化器的主要功能:
1. 将多Multiple join 合并为一个Muti-way join
2. 对join、group-by和自定义的MapReduce操作重新进行划分。
3. 消减不必要的列。
4. 在表的扫描操作中推行使用断言。
5. 对于已分区的表,消减不必要的分区。
6. 在抽样查询中,消减不必要的桶。
7. 优化器还增加了局部聚合操作用于处理大分组聚合和增加再分区操作用于处理不对称的分组聚合。
 

Hive的数据类型

Hive支持原子和复杂数据类型,原子数据类型包括:数据值、布尔类型、字符串类型等,复杂的类型包括:Array、Map和Struct。其中Array和Map和java中的Array和Map是相似的,Struct和C语言中的Struct相似。
例如:
[sql]  view plain  copy
 
  在CODE上查看代码片 派生到我的代码片
  1. Create table test(  
  2. col1 Array<int>,  
  3. col2 Map<String,int>,  
  4. col3 Struct<a:String,b:int,c:Double>  
  5. );  

 
注意:
1. 原子数据类型是可以进行隐式的转换的,例如tinyInt类型会自动转为Int类型但是不能由int自动转为tinyInt类型。
2. 所有的整数类型、Float和String类型都可以转换为Double类型。
3. TinyInt、SmallInt、Int都可以转为Float类型。
4. Boolean 类型不可以转换为其他的任何类型。
5. 可以通过使用Cast操作显示的进行数据转换,例如Cast('1' as int);将字符串转为整型,如果强制转换失败如:Cast('X' as int);表达式返回的是NULL;

Hive的特点

 
http://blog.csdn.net/wangyang1354/article/details/50570903


已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [大数据 时代 hive] 推荐:

大数据时代--Hive技术原理解析

- - zzm
Hive的运行原理,帮助使用者更好的了解在使用的过程中它做了些什么工作,深入的理解他的工作机制,提高开发人员理论层面的知识.        Hive是建立在 Hadoop 上的数据仓库基础构架. 它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制.

[原]自学大数据:Hive基于搜狗搜索的用户日志行为分析

- -
”大数据时代“,“大数据/云计算”,“大数据平台”,每天听到太多的大数据相关的词语,好像现在说一句话不跟大数据沾边都不好意思说自己是做IT的. 可能这与整个IT圈子的炒作也有关联,某一个方面来看其实就是一营销术语. 很多朋友就想问,我想做大数据,但是没有这个条件,没有这个数据量,没有那么多业务场景,没有那多集群可以吗.

hive中创建关联hbase表的几种方案_大数据_Tony_仔仔 的博客-CSDN博客

- -
有时候我们需要把已存在Hbase中的用户画像数据导到hive里面查询,也就是通过hive就能查到hbase里的数据. 但是我又不想使用sqoop或者DataX等工具倒来倒去. 这时候可以在hive中创建关联表的方式来查询hbase中的数据. 前提是:hbase中已经存在了一张表. 可选的方案:既可以在hive中关联此表的所有列簇,也可以仅关联一个列簇,也可以关联单一列蔟下的单一列,还可以关联单一列簇下的多个列.

hive调优

- - 互联网 - ITeye博客
一、    控制hive任务中的map数: . 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);.

hive 优化 tips

- - CSDN博客推荐文章
一、     Hive join优化. 也可以显示声明进行map join:特别适用于小表join大表的时候,SELECT /*+ MAPJOIN(b) */ a.key, a.value FROM a join b on a.key = b.key. 2.     注意带表分区的join, 如:.

Hive中的join

- - CSDN博客云计算推荐文章
select a.* from a join b on a.id = b.id select a.* from a join b on (a.id = b.id and a.department = b.department). 在使用join写查询的时候有一个原则:应该将条目少的表或者子查询放在join操作符的左边.

hive优化(2)

- - 开源软件 - ITeye博客
Hive是将符合SQL语法的字符串解析生成可以在Hadoop上执行的MapReduce的工具. 使用Hive尽量按照分布式计算的一些特点来设计sql,和传统关系型数据库有区别,. 所以需要去掉原有关系型数据库下开发的一些固有思维. 1:尽量尽早地过滤数据,减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段.

hive优化

- - 开源软件 - ITeye博客
hive.optimize.cp=true:列裁剪. hive.optimize.prunner:分区裁剪. hive.limit.optimize.enable=true:优化LIMIT n语句. hive.limit.optimize.limit.file=10:最大文件数.   1.job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默认128MB).

Hive优化

- - 互联网 - ITeye博客
     使用Hive有一段时间了,目前发现需要进行优化的较多出现在出现join、distinct的情况下,而且一般都是reduce过程较慢.      Reduce过程比较慢的现象又可以分为两类:. 情形一:map已经达到100%,而reduce阶段一直是99%,属于数据倾斜. 情形二:使用了count(distinct)或者group by的操作,现象是reduce有进度但是进度缓慢,31%-32%-34%...一个附带的提示是使用reduce个数很可能是1.

hive bucket 桶

- - CSDN博客推荐文章
对于每一个表(table)或者分区,Hive可以进一步组织成桶. Hive也是针对某一列进行桶的组织. Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中. 采用桶能够带来一些好处,比如JOIN操作. 对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作. 那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量.