Keras:基于Theano和TensorFlow的深度学习库

标签: keras theano tensorflow | 发表时间:2017-07-11 17:27 | 作者:
出处:https://keras-cn.readthedocs.io

Keras:基于Theano和TensorFlow的深度学习库

这就是Keras

Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow或Theano。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras:

  • 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性)
  • 支持CNN和RNN,或二者的结合
  • 无缝CPU和GPU切换

Keras适用的Python版本是:Python 2.7-3.5

Keras的设计原则是

  • 用户友好:Keras是为人类而不是天顶星人设计的API。用户的使用体验始终是我们考虑的首要和中心内容。Keras遵循减少认知困难的最佳实践:Keras提供一致而简洁的API, 能够极大减少一般应用下用户的工作量,同时,Keras提供清晰和具有实践意义的bug反馈。

  • 模块性:模型可理解为一个层的序列或数据的运算图,完全可配置的模块可以用最少的代价自由组合在一起。具体而言,网络层、损失函数、优化器、初始化策略、激活函数、正则化方法都是独立的模块,你可以使用它们来构建自己的模型。

  • 易扩展性:添加新模块超级容易,只需要仿照现有的模块编写新的类或函数即可。创建新模块的便利性使得Keras更适合于先进的研究工作。

  • 与Python协作:Keras没有单独的模型配置文件类型(作为对比,caffe有),模型由python代码描述,使其更紧凑和更易debug,并提供了扩展的便利性。


关于Keras-cn

本文档是Keras文档的中文版,包括keras.io的全部内容,以及更多的例子、解释和建议

现在,keras-cn的版本号将简单的跟随最新的keras release版本

由于作者水平和研究方向所限,无法对所有模块都非常精通,因此文档中不可避免的会出现各种错误、疏漏和不足之处。如果您在使用过程中有任何意见、建议和疑问,欢迎发送邮件到[email protected]与我取得联系。

您对文档的任何贡献,包括文档的翻译、查缺补漏、概念解释、发现和修改问题、贡献示例程序等,均会被记录在致谢,十分感谢您对Keras中文文档的贡献!

如果你发现本文档缺失了官方文档的部分内容,请积极联系我补充。

本文档相对于原文档有更多的使用指导和概念澄清,请在使用时关注文档中的Tips,特别的,本文档的额外模块还有:

  • Keras新手指南:我们新提供了“Keras新手指南”的页面,在这里我们对Keras进行了感性介绍,并简单介绍了Keras配置方法、一些小知识与使用陷阱,新手在使用前应该先阅读本部分的文档。

  • Keras资源:在这个页面,我们罗列一些Keras可用的资源,本页面会不定期更新,请注意关注

  • 深度学习与Keras:位于导航栏最下方的该模块翻译了来自Keras作者博客keras.io和其他Keras相关博客的文章,该栏目的文章提供了对深度学习的理解和大量使用Keras的例子,您也可以向这个栏目投稿。 所有的文章均在醒目位置标志标明来源与作者,本文档对该栏目文章的原文不具有任何处置权。如您仍觉不妥,请联系本人([email protected])删除。


当前版本与更新

如果你发现本文档提供的信息有误,有两种可能:

  • 你的Keras版本过低:记住Keras是一个发展迅速的深度学习框架,请保持你的Keras与官方最新的release版本相符

  • 我们的中文文档没有及时更新:如果是这种情况,请发邮件给我,我会尽快更新

目前文档的版本号是2.0.4,对应于官方的2.0.4 release 版本, 本次更新的主要内容是:

  • 文档全面升级为Keras2,绝大多数API均得到更新,请及时查看。对于Keras 1的用户,请从github下载本文档源代码,在legacy中将Markdown文件生成为pdf查看,同时如果哪位同学做了keras1.2.2文档的pdf版也请发邮件告诉我

  • 新增模块“keras新手指南”,敬请关注

  • 补充了原文档中缺失,但源代码中确实可用的类和函数

  • 重新整理了文档风格和栏目,使得文档更容易阅读,改变了一些词的译法

  • 目前,“深度学习与Keras”一节中的示例代码尚未调整到Keras 2版本,敬请注意。

  • 如果想查看Keras1和Keras2的API变动,请访问这里

注意,keras在github上的master往往要高于当前的release版本,如果你从源码编译keras,可能某些模块与文档说明不相符,请以官方Github代码为准


快速开始:30s上手Keras

Keras的核心数据结构是“模型”,模型是一种组织网络层的方式。Keras中主要的模型是Sequential模型,Sequential是一系列网络层按顺序构成的栈。你也可以查看函数式模型来学习建立更复杂的模型

Sequential模型如下

from keras.models import Sequential

model = Sequential()

将一些网络层通过.add()堆叠起来,就构成了一个模型:

from keras.layers import Dense, Activation

model.add(Dense(units=64, input_dim=100))
model.add(Activation("relu"))
model.add(Dense(units=10))
model.add(Activation("softmax"))

完成模型的搭建后,我们需要使用.compile()方法来编译模型:

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

编译模型时必须指明损失函数和优化器,如果你需要的话,也可以自己定制损失函数。Keras的一个核心理念就是简明易用同时,保证用户对Keras的绝对控制力度,用户可以根据自己的需要定制自己的模型、网络层,甚至修改源代码。

from keras.optimizers import SGD
model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01, momentum=0.9, nesterov=True))

完成模型编译后,我们在训练数据上按batch进行一定次数的迭代来训练网络

model.fit(x_train, y_train, epochs=5, batch_size=32)

当然,我们也可以手动将一个个batch的数据送入网络中训练,这时候需要使用:

model.train_on_batch(x_batch, y_batch)

随后,我们可以使用一行代码对我们的模型进行评估,看看模型的指标是否满足我们的要求:

loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)

或者,我们可以使用我们的模型,对新的数据进行预测:

classes = model.predict(x_test, batch_size=128)

搭建一个问答系统、图像分类模型,或神经图灵机、word2vec词嵌入器就是这么快。支撑深度学习的基本想法本就是简单的,现在让我们把它的实现也变的简单起来!

为了更深入的了解Keras,我们建议你查看一下下面的两个tutorial

还有我们的新手教程,虽然是面向新手的,但我们阅读它们总是有益的:

在Keras代码包的examples文件夹里,我们提供了一些更高级的模型:基于记忆网络的问答系统、基于LSTM的文本的文本生成等。


安装

Keras使用了下面的依赖包:

  • numpy,scipy

  • pyyaml

  • HDF5, h5py(可选,仅在模型的save/load函数中使用)

  • 如果使用CNN的推荐安装cuDNN

当使用TensorFlow为后端时:

当使用Theano作为后端时:

“后端”翻译自backend,指的是Keras依赖于完成底层的张量运算的软件包。

安装Keras时,请cd到Keras的文件夹中,并运行下面的安装命令:

sudo python setup.py install

你也可以使用PyPI来安装Keras

sudo pip install keras

详细的Windows和Linux安装教程请参考“Keras新手指南”中给出的安装教程,特别鸣谢SCP-173编写了这些教程


在Theano和TensorFlow间切换

Keras默认使用TensorFlow作为后端来进行张量操作,如需切换到Theano,请查看这里


技术支持

你可以在下列网址提问或加入Keras开发讨论:

你也可以在Github issues里提问或请求新特性。在提问之前请确保你阅读过我们的指导

另外,对于习惯中文的用户,我们推荐在“集智”平台提问,该平台由Kaiser等搭建,支持在线代码运行环境,我本人会经常访问该网站解答问题

最后,我们也欢迎同学们加我们的QQ群119427073进行讨论(潜水和灌水会被T,入群说明公司/学校-职位/年级)



相关 [keras theano tensorflow] 推荐:

Keras:基于Theano和TensorFlow的深度学习库

- -
Keras:基于Theano和TensorFlow的深度学习库. Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow或Theano. Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras:. 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性).

动态神经网络工具包DyNet:比Theano和TensorFlow更快

- - IT瘾-tuicool
近日,来自卡内基梅隆大学、日本奈良先端科学技术大学、Google DeepMind、以色列巴伊兰大学、艾伦人工智能研究所、IBM T.J. Watson 研究中心、澳大利亚墨尔本大学、约翰·霍普金斯大学、谷歌、华盛顿大学、微软和英国爱丁堡大学的研究者共同发表了一篇重磅论文《DyNet: The Dynamic Neural Network Toolkit》,正式介绍了动态神经网络工具包 DyNet;该工具包也已在 GitHub 上开源:http://github.com/clab/dynet.

当Bert遇上Keras:这可能是Bert最简单的打开姿势

- - 机器之心
Bert 是什么,估计也不用笔者来诸多介绍了. 虽然笔者不是很喜欢Bert,但不得不说,Bert 确实在 NLP 界引起了一阵轩然大波. 现在不管是中文还是英文,关于 Bert 的科普和解读已经满天飞了,隐隐已经超过了当年 Word2Vec 刚出来的势头了. 有意思的是,Bert 是 Google 搞出来的,当年的 word2vec 也是 Google 搞出来的,不管你用哪个,都是在跟着 Google 大佬的屁股跑.

TensorFlow-dev-summit:那些 TensorFlow 上好玩的和黑科技

- - IT瘾-dev
本文属于介绍性文章,其中会介绍许多TensorFlow的新feature和summit上介绍的一些有意思的案例,文章比较长,可能会花费30分钟到一个小时. Google于2017年2月16日(北京时间)凌晨2点在美国加利福尼亚州山景城举办了首届TensorFlow开发者峰会. Google现场宣布全球领先的深度学习开源框架TensorFlow正式对外发布V1.0版本,并保证Google的本次发布版本的API接口满足生产环境稳定性要求.

TensorFlow、MXNet、PaddlePaddle 三个开源库对比

- - IT瘾-dev
【转载请注明出处】 chenrudan.github.io. 从深度学习开始流行,到深度学习框架的迭代,到各类实际应用的出现,不过短短几年时间. 其实发展到现在,各个框架对自己的定位都不相同,硬要说哪个框架最好没什么必要,结合自身需求找到合适的用就够了(实验室的服务器不太方便拿来折腾,本文就不比较运算速度了,可以参考[4][5]).

深度学习利器:TensorFlow实战

- - 孟飞阳的博客
深度学习及TensorFlow简介. 深度学习目前已经被应用到图像识别,语音识别,自然语言处理,机器翻译等场景并取得了很好的行业应用效果. 至今已有数种深度学习框架,如TensorFlow、Caffe、Theano、Torch、MXNet,这些框架都能够支持深度神经网络、卷积神经网络、深度信念网络和递归神经网络等模型.

如何将TensorFlow用作计算框架

- - 神刀安全网
摘要:如果你刚刚接触TensorFlow并想使用其来作为计算框架,那么本文是你的一个很好的选择,阅读它相信会对你有所帮助. Tensorflow可能是最受欢迎,增长最快的机器学习框架. 在 Github拥有超过70000个点赞,并得到Google的支持,不仅拥有比 Linux更多的点赞,还拥有大量的资源.

TensorFlow自动识别验证码(二)

- -
在 使用tensorflow自动识别验证码(一) 这篇文章中,对使用tensorflow自动识别验证码的过程做了简单的了解和编写. 那么今天这篇文章将对上篇文章中代码进行修改用于实现对主流的CMS进行验证码的破解. 先回顾一下 tensorflow 的自动识别验证码的步骤. 由于后面三步基本都是tensorflow自动完成.

[转]Tensorflow实现的CNN文本分类

- - Soul Joy Hub
在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类的模型. 本文提出的模型在一系列文本分类任务(如情感分析)中实现了良好的分类性能,并已成为新的文本分类架构的标准基准. 本文假设你已经熟悉了应用于NLP的卷积神经网络的基础知识. 如果没有,建议先阅读Understanding Convolutional Neural Networks for NLP 以获得必要的背景.

[原]Tensorflow中采用的量化方案

- - Mingyong_Zhuang的技术博客
Tensorflow中采用的量化方案. 本文根据google发表在cvpr2018上的量化文章《Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference》讲解量化过程,该过程同时也是谷歌的Tensorflow Lite中使用的量化方法.