智能技术的伦理风险

标签: 智能 技术 伦理 | 发表时间:2017-11-27 11:25 | 作者:
出处:http://gigix.thoughtworkers.org/

(旧文一篇,已发表于 土逗公社

人工智能的风险已经不再是一个新话题。在过去几年中,很多研究者提及了人工智能(以及与之紧密相关的技术,尤其是机器学习和大数据技术)可能带来的危害与风险。值得注意的现象是:在公众话语空间中流行的关于智能技术伦理危害与风险的讨论,大多将“人类”整体视为潜在的被损害的对象。大量的叙事被构建为“机器 vs. 人类”的形式。而关于智能技术如何被当前社会的权力结构主导、并反过来强化当前社会的权力结构、加深对弱势边缘群体的压迫,这一方面的讨论数量较少,且较缺乏系统性。本文将介绍一些关于智能技术伦理危害与风险的讨论,并着重介绍一些智能技术强化社会与经济不公正的案例。

一些关于智能技术伦理危害与风险的讨论已经进入了流行文化空间,吸引了大众的兴趣。这类讨论通常呈现未来学的形式,试图推测人工智能技术成熟、尤其是具备了自我完善的能力之后可能的未来图景。如 超级智能人工智能毁灭人类技术奇点等讨论吸引了大众对于智能技术的伦理问题的广泛关注。

比起这些事关人类存亡、略带科幻感的宏大叙事,另一些由智能技术带来的伦理危害与风险正在更加现实地发生。例如智能技术对就业的影响,是一个经常被提及的主题。 Kevin Kelly认为,机器在工作中对人的取代是一个不可逆的过程,有一些工作暂时只有人类能做或做得比机器更好,但机器终将胜过人类,绝大多数人类在几十年后将不再需要从事生产工作。 麦肯锡的一个研究则更具体地列出了各种职业被机器取代的可能性,其中生产线工作、准备食物、包装物品等“可预测的物理工作”是最容易被机器取代的。

除了造成大面积、结构性失业, 对人工智能的常见担忧还包括赛博空间和物理空间的战争:控制了大量资源甚至自动化武器的人工智能是否会攻击它们本不应该攻击的对象?这种危险甚至不必以战争的形式出现:人工智能的错误行为、甚至只是不恰当的优化,考虑到它们已经在社会经济中扮演如此重要的角色,是否会造成极端恶劣的结果?

可以注意到,以上几类常见的关于智能技术伦理危害与风险的讨论总体上强调人工智能对人类整体的影响,并不凸显其对当前社会不同人群造成不同影响的情况。同样的趋势也出现在对智能技术的风险进行的分析当中。众多这类分析聚焦于技术层面,而并未将社会和政治层面的因素纳入考虑。例如 一位斯坦福大学的研究者认为,通过机器学习尤其是深度学习得到的统计学模型具有以下特征,使得它们存有安全隐患:

  • 不透明:很难、甚至根本无法看懂其中的逻辑;
  • 整体不可分:无法通过局部分拆理解输入输出之间的关系;
  • 脆弱:输入的微小变化可能引起输出的重大且无法预测的变化;
  • 不被充分理解。

作为对比,《 Weapons of Math Destruction》一书的作者Cathy O’Neil也提到了广泛影响人们日常工作与生活的众多智能算法工具的 几个危险的特征

  1. 它们是秘密的,经常是某家公司的商业秘密;
  2. 它们是不透明的,被它们影响的人群不了解这些算法如何运行;
  3. 它们应用的范围很广;
  4. 它们对“成功”的定义值得置疑,被它们影响的人们未必赞同
  5. 它们制造了有害的反馈环。

相比前一组特征,O’Neil识别的这一组特征具有一个值得注意的要点:她在其中提及了特定的人群。尤其是在第4点中,O’Neil指出了一个极其重要、但绝非总是明显的问题:智能技术对人的影响是有区别的,同一个技术可能让一部分人受益、同时让另一部分人受损。她举了这样一个例子:2010年在伊利诺伊州开始实施的教师绩效评估算法引发了芝加哥教师的 广泛反对乃至游行抗议。正如 Linnet Taylor不无洞见地指出的,在进行伦理评估时,人们倾向于抽象地谈论智能技术可能造成的伤害,而具体地谈论它带来的收益,于是实在的收益总能压倒模糊未知的伤害,从而使项目通过评估。通过将社会和政治因素纳入讨论范围,O’Neil提出的对具体人群的关注给了我们一个重要的视角,来重新审视智能技术可能带来的损害和风险。

透过这个视角,我们首先可以注意到,智能技术对劳动力市场的影响并非均质。正如Erik Brynjolfsson和Andrew McAfee在《 与机器赛跑》一书中指出的,教育程度较低、薪酬较低的劳动者更易被智能技术取代,同时也是这部分劳动者更难以获得新的职业技能,从而加重他们在结构性失业中受到的损害。正如 Paul Krugman一针见血地指出的,全能且高效的工作机器人(workbot)的出现未必会让世界变得美好,因为没有能力拥有机器人的那些人的处境将非常悲惨。尽管这方面的研究还很少,但一些现有的研究显示:在高度自动化、智能化的工作环境下,教育和技能水平较低的劳动者正在面临劳动环境恶化、劳动强度增大、收入降低、缺乏劳动和社会保障等挑战。此种现象 在“分享经济”形态中普遍可见。在一些极端的情况下,劳动者被异化成“ 数字机器上的幽灵”和“ 生产线上的奴隶”。

实际上,智能技术可能正在加深对社会弱势群体的偏见和歧视。正如 Wendy Chun所说,“机器学习就像偏见的洗钱”。通过机器学习,偏见和歧视被包装成模型和算法,使不公正变得更加隐秘而影响深远。职场社交网站 LinkedIn的搜索引擎更青睐男性求职者,Google的广告平台 Adsense存在种族偏见,饱受争议的“预测性执法”(predictive policing) 对非裔美国人和穆斯林形成结构性歧视,低收入人群会因为智能技术 更难从贫困中逃脱。性别、种族、宗教信仰、收入……现实中的各种偏见与歧视,似乎都在智能技术中找到了落脚点。

智能技术不仅被用于实施对弱势群体的损害、歧视和隔离,而且被用于控制大众情绪。通过 操控用户从新闻订阅渠道看到的信息,Facebook成功地调节了用户发帖的情绪,从而证明情绪可以在大量在线用户之间传染。 一份曝光的材料显示,JTRIG(联合威胁研究智能小组,隶属于英国情报和国家安全机关政府通信总部)已经在通过Youtube、Facebook、Twitter、博客、论坛、电子邮件、短信、自建网站等渠道操纵大众情绪,从而消除“犯罪、安全和国防威胁”。当用于政治领域,正如 Cathy O’Neil指出的,智能技术可以诱导选民做出片面的判断;当用于商业领域, 邱林川则指出,智能技术可以向消费者灌输消费理念,使他们成为对不断更新换代的消费品上瘾的“被制造的奴隶”(manufactured slave)。

早在1980年代中期,研究者们就围绕“计算机伦理是否具有独特性”这一问题展开了讨论。 Johnson认为,计算机伦理只是把标准的道德问题以新形式呈现,逼迫我们在新的领域中延续旧的道德规范,它本身不是一个独特的新题目。而 Moor则认为,计算机会大幅度转化/强化现有的伦理问题,并且造成过去未曾出现过的新的伦理问题,因此计算机伦理本身就是一个独特的新题目。这两种观点对于我们全面认识智能技术的伦理问题有着重要的启发意义。我们既需要充分了解智能技术的独特性、及其对伦理问题带来的独特影响,又必须认清新技术背后潜藏的旧有的冲突、斗争和伦理准则,这样才能准确把握智能技术的伦理方向,使其向着对广大民众有益的方向发展。

相关 [智能 技术 伦理] 推荐:

智能技术的伦理风险

- - 透明思考
(旧文一篇,已发表于 土逗公社). 人工智能的风险已经不再是一个新话题. 在过去几年中,很多研究者提及了人工智能(以及与之紧密相关的技术,尤其是机器学习和大数据技术)可能带来的危害与风险. 值得注意的现象是:在公众话语空间中流行的关于智能技术伦理危害与风险的讨论,大多将“人类”整体视为潜在的被损害的对象.

人工智能技术新进展

- - 生命奥秘
新的计算机人脑模型可以模拟更加复杂的人类行为. 人类的大脑是一个高度复杂的器官,在众多对人类大脑的研究工作当中就包括了从分子水平到人类行为活动水平等多个层面采集大脑相关信息的工作. 这种超大范围的研究方式很有可能会让大脑研究走向专业不断细化的发展方向,这种趋势虽然有利于大脑研究的不断深化,可是同时也会带来知识碎片化的结果.

Java OCR tesseract 图像智能字符识别技术

- - CSDN博客互联网推荐文章
公司有需求啊,所以就得研究哈,最近公司需要读验证码,于是就研究起了图像识别,应该就是传说中的(OCR:光学字符识别OCR),下面把今天的收获整理一个给大家做个分享. 本人程序用的tesseract,官方地址:https://code.google.com/p/tesseract-ocr/,不为别的,谁让它支持我们的天朝的文字呢~哈.

五大可识别图片的人工智能技术

- - ITeye资讯频道
很长一段时间以来,人工智能的研究都停留在文字层面,比如著名的图灵测试(Turning Test),证明了机器能够像人类一样智能地回答书面问题. 而如果让机器变得更聪明,仅仅处理文字显然是不够的. 事实上,人类心智非常善于视觉处理. 从所见当中识别图案、物体以及文本情景的能力让我们很智能,这种能力也是人的本质特征.

Spark技术在京东智能供应链预测的应用

- - IT瘾-bigdata
前段时间京东公开了面向第二个十二年的战略规划,表示京东将全面走向技术化,大力发展人工智能和机器人自动化技术,将过去传统方式构筑的优势全面升级. 京东Y事业部顺势成立,该事业部将以服务泛零售为核心,着重智能供应能力的打造,核心使命是利用人工智能技术来驱动零售革新. 1.1   京东的供应链. 京东一直致力于通过互联网电商建立需求侧与供给侧的精准、高效匹配,供应链管理是零售联调中的核心能力,是零售平台能力的关键体现,也是供应商与京东紧密合作的纽带,更是未来京东智能化商业体布局中的核心环节.

NLPIR技术助力中文智能数据挖掘

- - 互联网 - ITeye博客
  随着数据技术的飞速发展以及广泛应用,许多企业和部门建立了自身的数据管理系统,经过长年努力,已经积累了越来越多的数据. 于是,人们开始渴望通过对这些庞大的数据分析得到更多的有助于决策的信息. 虽然,目前的数据系统可以高效率地实现数据的录入、查询、统计等功能,但由于数据量庞大以及数据库系统中分析方法的严重缺乏,使得它无法发现数据中隐藏的相互联系,更无法根据当前和历史的数据去预测未来的发展趋势.

腾讯发布战略产品“智能云” 向外界开放人工智能技术平台

- - 穿过记忆的河流
腾讯发布战略产品“智能云” 向外界开放人工智能技术平台. 澎湃新闻2017-06-21 . 在BAT(百度、阿里巴巴、腾讯)互联网三巨头中,腾讯是最后一家向外界开放人工智能技术平台的公司. 6月21日,腾讯(00700.HK)旗下的云计算公司腾讯云在深圳举行腾讯云 未来峰会上,发布战略产品“智能云”,宣布开放腾讯在计算机视觉、智能语音识别、自然语言处理的三大核心能力.

双链路智能切换 - IP技术专栏 - 技术甜甜圈 - 新华三集团-H3C

- -
将原有线路和新增线路进行链路聚合,可实现流量负载和备份,由于是广域网线路,不推荐进行链路聚合,可能存在极端情况线路故障不能切换问题. 将新增线路设置成三层路由模式,可通过新增加一条等价路由的方式实现流量负载,路由协议可以选用静态路由或者动态路由(ospf等)当其中一条链路故障时,流量会自动切换至另一条线路,同时建议在两条广域网线路上增加NQA检测配置,并绑定至路由上,用于实现流量自动切换.

[个推 CTO 谈数据智能] 之本质及技术体系要求

- - DiyCode - 致力于构建开发工程师高端交流分享社区社区
毕业于浙江大学,现全面负责个推技术选型、研发创新、运维管理等工作,已带领团队开发出针对移动互联网、金融风控等行业的多项前沿数据智能解决方案. 曾任MSN中国首席架构师,拥有十余年资深技术开发与项目管理经验,在大数据处理系统、大规模并发平台、分布搜索系统、手机应用开发、无线通信领域和智慧金融系统等领域拥有丰富实践经验.

亚马逊将使用人工智能技术来总结用户评论

- - TechWeb 今日焦点 RSS阅读
【TechWeb】6月13日消息,据外媒报道,亚马逊将使用人工智能(AI)技术来总结用户评论,以快速概述消费者对特定产品的看法. 外媒称,这种创新方法不仅简化了购买过程,而且使客户对他们正在考虑的产品有了宝贵的了解,最终提高了整体客户体验. 不过,据外媒报道,AI生成的总结是基本的,并没有捕捉到评论中表达的全部意见.