当Google谈论机器学习时,它在谈论什么?

标签: google 机器学习 | 发表时间:2018-05-12 19:05 | 作者:
出处:http://news.cnblogs.com/

Google 一年一度的开发者大会 I/O 2018,本周在硅谷隆重上演。这你已经知道了,关于大会报道,请移步 这里

开幕前一天,Google 在总部举办了一堂名为“机器学习 101”的人工智能课,尝试用最接地气的方法介绍谷歌在机器学习方面正在做的事情。

这堂课的老师 克里斯汀·罗伯森 (Christine Robson) 是 Google AI(原 Google Research)研究员,主攻人机交互方向。

机器学习是人工智能这个庞杂范畴中的一个重要技术。“人工智能就是让事物变聪明的科学,”罗伯森说。“机器学习技术则是制造能够学习变聪明的机器。”

她用最简单的语句概括 Google 眼中机器学习的定义:

机器学习就是一个新的解决问题的系统。

真的只是数学

首先我们需要理解旧系统和新系统的区别。旧的系统指的是基于规则的系统(rule-based system),需要程序员告诉机器一件事情的规则。

过去几乎所有的程序都属于基于规则,而告诉机器规则的过程就是编程。强大如曾经击败卡斯帕罗夫的深蓝 (Deep Blue),也是基于规则的。但机器学习是通过新的算法,让机器并不需要太多的编程就可以自动学习,自动创造解决问题的系统,

罗伯森使用了“自动” (Automatically) 一词,而非人工智能里的“人工” (artificial) 。

这似乎是为了减少对后者的过分使用,避免因此带来的人工智能“妖魔化”趋势。Google 正意识到围绕人工智能产生的负面效应。

在谢尔盖·布林 (Sergey Brin) 署名的《创始人信》中,这位 Google 的联合创始人提到了人工智能潜在的负面影响,包括对人工智能具有科幻般感知能力的恐慌,以及更近在眼前的,无人驾驶的稳定性问题等。

近两年,人们对人工智能的恐惧明显有所加深,而几乎每一种对这种恐惧的描述中,都有 AlphaGo 的身影。不少人认为,机器学习创造的人工智系统,存在超越人类认知能力的可能性——大量不同算法的结合,可能会带来一个只有机器可以理解的系统。

罗伯森并不这么认为。她希望让对这门学问不熟悉的人知道,“机器学习就只是数学,真的只是数学。而且还是最简单的数学。”

机器学习都是建立在最简单形式的线性代数基础上的。“这么说听起来确实很吓人。但我并不想吓人。我并不认为机器学习系统很难理解。”

而对于机器学习系统会变成一个黑箱的观点,也即大量不同算法融合进一个复杂系统后,人类无法确切知道系统内具体发生了什么——她也认为是个常见的“误解”,不熟悉的人和刚开始接触机器学习者都会遇到。

“机器学习并非一个真的黑箱,如果你研究了一段时间,你会发现在神经网络里,每个结果是可以确切回溯 (trace) 的。“

那么,如何定义回溯?罗伯森认为并不需要准确找到具体哪一个原始数据出了问题。“Google 在这方面做了很多努力,确保我们清楚网络里发生了什么。你想知道输出结果为何出错的时候,把里面的数学部分抽出来分析就行。”

猫咪无处不在

和互联网以及社交网络一样,机器学习这个圈子里,最有存在感的是猫。

罗伯森引用 YouTube 学习识别猫咪图像的案例,来介绍了神经网络通过多个层级来完成学习的过程,在强调 Google 拥有强大的计算能力时,罗伯森也用猫咪做例子:“Google 能够分析网上所有猫咪图片,尽管猫咪图片的数量真是多的可怕。”

猫俨然成了让机器学习走进人间的利器。“在 Google,我们很擅长关于猫的事情。”

医学应用取得突破

不过,光有猫肯定不够。“当我们把分析猫的技术,应用于其他领域,这就更加令人兴奋。”罗伯森说。

目前,Google 在机器学习方面最骄傲的应用领域是医学。近几年的 I/O 开幕演讲中,CEO 颂达尔·皮柴 (Sundar Pichai) 经常提到 机器学习帮助识别糖尿病视网膜病变的案例,该公司使用一个 26 层的卷积神经网络进行训练,得到的诊断敏感度和准确率都高于职业眼科医生。

医学领域不像猫一样,Google 最初使用的图像数据库只有几千张,但该公司的机器学习系统依然能够取得令人满意的结果,为医生的诊断提供重要帮助和效率提升。比如在识别乳腺癌的研究中,Google 只用了 270 张图片做训练。

罗伯森形容自己是一个“Machine Learning person”,而 Google 给了她充足支持。“我的 CEO 对人工智能充满激情,这也让我对我的工作感到兴奋。”

“Google 的目标是让人工智能普及化,每个人都可以使用。”

罗伯森指出,Google 在机器学习和人工智能上所做的事情主要有三个:第一,让 Google 的产品更加好用,这在今年 I/O 宣布的 Android、Google Assistant 等产品上有很强的体现;第二,把最尖端的技术开放给大众,让每个人都可以参与进来,这个目标通过 AutoML、ML Kit 等开发者工具实现了。

第三,就是为人类现在面对的问题带来变革。人工智能很有可能是人类在漫漫的历史长河中,迄今为止开发出的最重要的技术。就像人们掌握了取火和发电的能力那样,人工智能将作为一种更高效率和变革性的存在,帮助人类解决被认为不可解决的难题,迈向更好的世界。

Google 的每一位人工智能研究者都对此坚信不疑。

本文链接

相关 [google 机器学习] 推荐:

Google 开源机器学习数据集可视化工具 Facets

- - 开源中国社区最新新闻
ML 数据集可以包含数亿个数据点,每个数据点由数百(甚至数千)的特征组成,几乎不可能以直观的方式了解整个数据集. 为帮助理解、分析和调试 ML 数据集,谷歌开源了 Facets,一款可视化工具. Facets 包含两个部分 —— Facets Overview 和 Facets Dive ,允许用户以不同的粒度查看其数据的整体图像.

当Google谈论机器学习时,它在谈论什么?

- - 博客园_新闻
Google 一年一度的开发者大会 I/O 2018,本周在硅谷隆重上演. 这你已经知道了,关于大会报道,请移步 这里. 开幕前一天,Google 在总部举办了一堂名为“机器学习 101”的人工智能课,尝试用最接地气的方法介绍谷歌在机器学习方面正在做的事情. 这堂课的老师 克里斯汀·罗伯森 (Christine Robson) 是 Google AI(原 Google Research)研究员,主攻人机交互方向.

Google 发布关于机器学习工程的最佳实践

- -
本文档旨在帮助已掌握机器学习基础知识的人员从 Google 机器学习的最佳实践中受益. 它介绍了一种机器学习样式,类似于 Google C++ 样式指南和其他常用的实用编程指南. 如果您学习过机器学习方面的课程,或者拥有机器学习模型的构建或开发经验,则具备阅读本文档所必需的背景知识. 在我们讨论有效的机器学习的过程中,会反复提到下列术语:.

前提条件和准备工作  |  机器学习速成课程  |  Google Developers

- -
我对机器学习知之甚少或一无所知. 我们建议您按顺序学习所有资料. 我对机器学习有一些了解,但想了解更新、更全面的机器学习知识. 机器学习速成课程是很好的复习进修资料. 您可以按顺序学习所有单元,也可以只学习您感兴趣的单元. 我很了解机器学习,但对 TensorFlow 知之甚少或一无所知. 很多资料对您来说可能太初级了.

机器学习五步走

- - 我爱机器学习
经常会有人问“我该如何在机器学习方面更进一步,我不知道我接下来要学什么了. 一般我都会给出继续钻研教科书的答案. 每当这时候我都会收到一种大惑不解的表情. 但是进步确实就是持续的练习,保持较强的求知欲,并尽你可能的完成具有挑战性的工作. 因为他是为数不多的几种可以让你真真让你获取坚实知识的媒介. 是的,你可以选择选一门课,注册MOOC,参加一些讨论班.

机器学习之路

- - 我爱机器学习
自从答应简二毛博士将自己的机器学习历程和心得分享给大家至今,转眼间半年已经过去了,感谢简博士分享和开源精神的鼓舞,这也正是本系列关于机器学习介绍博客的动力来源. 之前有些网友,师弟们问我,学习机器学习怎么入手,从看什么书开始. 如果你只愿意看一本书,那么推荐Bishop的PRML,全名Pattern Recognition and Machine Learning. 这本书是机器学习的圣经之作,尤其对于贝叶斯方法,介绍非常完善.

机器学习算法Boosting

- - 标点符
机器学习通常会被分为2大类:监督学习和非监督学习. 在监督学习中,训练数据由输入和期望的输出组成,然后对非训练数据进行预测输出,也就是找出输入x与输出y之间的函数关系F:y = F(x). 根据输出的精确特性又可以分为分类和回归. 分类和回归的区别在于输出变量的类型. 定量输出称为回归,或者说是连续变量预测.

Mahout实现的机器学习算法

- - ITeye博客
使用命令:mahout -h.   在Mahout实现的机器学习算法见下表:. EM聚类(期望最大化聚类). 并行FP Growth算法. 并行化了Watchmaker框架. 非Map-Reduce算法. 扩展了java的Collections类. Mahout最大的优点就是基于hadoop实现,把很多以前运行于单机上的算法,转化为了MapReduce模式,这样大大提升了算法可处理的数据量和处理性能.

国内的机器学习几个人

- - 丕子
转: http://blog.csdn.net/playoffs/article/details/7588597. 推荐几个机器学习和数据挖掘领域相关的中国大牛:. 李航:http://research.microsoft.com/en-us/people/hangli/,是MSRA Web Search and Mining Group高级研究员和主管,主要研究领域是信息检索,自然语言处理和统计学习.

Apache Mahout 0.8 发布,机器学习库

- - 开源中国社区最新新闻
Apache Mahout 0.8 发布了,Apache Mahout 是 Apache Software Foundation (ASF) 开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在 Apache 在许可下免费使用. 该项目已经发展到了它的最二个年头,目前只有一个公共发行版.