聊聊 TCP 长连接和心跳那些事

标签: tuicool | 发表时间:2019-01-07 00:00 | 作者:
出处:http://itindex.net/relian

可能很多 Java 程序员对 TCP 的理解只有一个三次握手,四次握手的认识,我觉得这样的原因主要在于 TCP 协议本身稍微有点抽象(相比较于应用层的 HTTP 协议);其次,非框架开发者不太需要接触到 TCP 的一些细节。其实我个人对 TCP 的很多细节也并没有完全理解,这篇文章主要针对微信交流群里有人提出的长连接,心跳的问题,做一个统一的整理。

在 Java 中,使用 TCP 通信,大概率会涉及到 Socket、Netty,本文会借用它们的一些 API 和设置参数来辅助介绍。

长连接与短连接

TCP 本身并没有长短连接的区别,长短与否,完全取决于我们怎么用它。

  • 短连接:每次通信时,创建 Socket;一次通信结束,调用 socket.close()。这就是一般意义上的短连接,短连接的好处是管理起来比较简单,存在的连接都是可用的连接,不需要额外的控制手段。
  • 长连接:每次通信完毕后,不会关闭连接,这样就可以做到连接的复用。 长连接的好处便是省去了创建连接的耗时。

短连接和长连接的优势,分别是对方的劣势。想要图简单,不追求高性能,使用短连接合适,这样我们就不需要操心连接状态的管理;想要追求性能,使用长连接,我们就需要担心各种问题:比如 端对端连接的维护,连接的保活

长连接还常常被用来做数据的推送,我们大多数时候对通信的认知还是 request/response 模型,但 TCP 双工通信的性质决定了它还可以被用来做双向通信。在长连接之下,可以很方便的实现 push 模型。

短连接没有太多东西可以讲,所以下文我们将目光聚焦在长连接的一些问题上。纯讲理论未免有些过于单调,所以下文我借助 Dubbo 这个 RPC 框架的一些实践来展开 TCP 的相关讨论。

服务治理框架中的长连接

前面已经提到过,追求性能的时候,必然会选择使用长连接,所以借助 Dubbo 可以很好的来理解 TCP。我们开启两个 Dubbo 应用,一个 server 负责监听本地 20880(众所周知,这是 Dubbo 协议默认的端口),一个 client 负责循环发送请求。执行 lsof -i:20880命令可以查看端口的相关使用情况:

*:20880 (LISTEN)
open too many files

长连接的维护

因为客户端请求的服务可能分布在多个服务器上,客户端端自然需要跟对端创建多条长连接,使用长连接,我们遇到的第一个问题就是要如何维护长连接。

@Sharable
public class NettyHandler extends SimpleChannelHandler {

    private final Map<String, Channel> channels = new ConcurrentHashMap<String, Channel>(); // <ip:port, channel>
}
public class NettyServer extends AbstractServer implements Server {
    private Map<String, Channel> channels; // <ip:port, channel>
}

在 Dubbo 中,客户端和服务端都使用 ip:port维护了端对端的长连接,Channel 便是对连接的抽象。我们主要关注 NettyHandler 中的长连接,服务端同时维护一个长连接的集合是 Dubbo 的设计,我们将在后面提到。

连接的保活

这个话题就有的聊了,会牵扯到比较多的知识点。首先需要明确一点,为什么需要连接的报活?当双方已经建立了连接,但因为网络问题,链路不通,这样长连接就不能使用了。需要明确的一点是,通过 netstat,lsof 等指令查看到连接的状态处于 ESTABLISHED状态并不是一件非常靠谱的事,因为连接可能已死,但没有被系统感知到,更不用提假死这种疑难杂症了。如果保证长连接可用是一件技术活。

连接的保活:KeepAlive

首先想到的是 TCP 中的 KeepAlive 机制。KeepAlive 并不是 TCP 协议的一部分,但是大多数操作系统都实现了这个机制。KeepAlive 机制开启后,在一定时间内(一般时间为 7200s,参数 tcp_keepalive_time)在链路上没有数据传送的情况下,TCP 层将发送相应的KeepAlive探针以确定连接可用性,探测失败后重试 10(参数 tcp_keepalive_probes)次,每次间隔时间 75s(参数 tcp_keepalive_intvl),所有探测失败后,才认为当前连接已经不可用。

在 Netty 中开启 KeepAlive:

bootstrap.option(ChannelOption.TCP_NODELAY, true)

Linux 操作系统中设置 KeepAlive 相关参数,修改 /etc/sysctl.conf文件:

net.ipv4.tcp_keepalive_time=90
net.ipv4.tcp_keepalive_intvl=15
net.ipv4.tcp_keepalive_probes=2

KeepAlive 机制是在网络层面保证了连接的可用性,但站在应用框架层面我们认为这还不够。主要体现在两个方面:

/etc/sysctl.conf

看来,应用层面的连接保活还是必须要做的。

连接的保活:应用层心跳

终于点题了,文题中提到的 心跳便是一个本文想要重点强调的另一个 TCP 相关的知识点。上一节我们已经解释过了,网络层面的 KeepAlive 不足以支撑应用级别的连接可用性,本节就来聊聊应用层的心跳机制是实现连接保活的。

如何理解应用层的心跳?简单来说,就是客户端会开启一个定时任务,定时对已经建立连接的对端应用发送请求(这里的请求是特殊的心跳请求),服务端则需要特殊处理该请求,返回响应。如果心跳持续多次没有收到响应,客户端会认为连接不可用,主动断开连接。不同的服务治理框架对心跳,建连,断连,拉黑的机制有不同的策略,但大多数的服务治理框架都会在应用层做心跳,Dubbo 也不例外。

应用层心跳的设计细节

以 Dubbo 为例,支持应用层的心跳,客户端和服务端都会开启一个 HeartBeatTask,客户端在 HeaderExchangeClient中开启,服务端将在 HeaderExchangeServer开启。文章开头埋了一个坑:Dubbo 为什么在服务端同时维护 Map<String , Channel>呢?主要就是为了给心跳做贡献,心跳定时任务在发现连接不可用时,会根据当前是客户端还是服务端走不同的分支,客户端发现不可用,是重连;服务端发现不可用,是直接 close。

// HeartBeatTask
if (channel instanceof Client) {
    ((Client) channel).reconnect();
} else {
    channel.close();
}

熟悉其他 RPC 框架的同学会发现,不同框架的心跳机制真的是差距非常大。心跳设计还跟连接创建,重连机制,黑名单连接相关,还需要具体框架具体分析。

除了定时任务的设计,还需要在协议层面支持心跳。最简单的例子可以参考 nginx 的健康检查,而针对 Dubbo 协议,自然也需要做心跳的支持,如果将心跳请求识别为正常流量,会造成服务端的压力问题,干扰限流等诸多问题。

其中 Flag 代表了 Dubbo 协议的标志位,一共 8 个地址位。低四位用来表示消息体数据用的序列化工具的类型(默认 hessian),高四位中,第一位为1表示是 request 请求,第二位为 1 表示双向传输(即有返回response), 第三位为 1 表示是心跳事件

心跳请求应当和普通请求区别对待。

注意和 HTTP 的 KeepAlive 区别对待

  • HTTP 协议的 KeepAlive 意图在于连接复用,同一个连接上串行方式传递请求-响应数据
  • TCP 的 KeepAlive 机制意图在于保活、心跳,检测连接错误。

这压根是两个概念。

KeepAlive 常见错误

启用 TCP KeepAlive 的应用程序,一般可以捕获到下面几种类型错误

  1. ETIMEOUT 超时错误,在发送一个探测保护包经过 (tcp_keepalive_time + tcp_keepalive_intvl * tcp_keepalive_probes)时间后仍然没有接收到 ACK 确认情况下触发的异常,套接字被关闭

    java.io.IOException: Connection timed out
  2. EHOSTUNREACH host unreachable(主机不可达)错误,这个应该是 ICMP 汇报给上层应用的。

    java.io.IOException: No route to host
  3. 链接被重置,终端可能崩溃死机重启之后,接收到来自服务器的报文,然物是人非,前朝往事,只能报以无奈重置宣告之。

    java.io.IOException: Connection reset by peer

总结

有三种使用 KeepAlive 的实践方案:

  1. 默认情况下使用 KeepAlive 周期为 2 个小时,如不选择更改,属于误用范畴,造成资源浪费:内核会为每一个连接都打开一个保活计时器,N 个连接会打开 N 个保活计时器。 优势很明显:
    • TCP 协议层面保活探测机制,系统内核完全替上层应用自动给做好了
    • 内核层面计时器相比上层应用,更为高效
    • 上层应用只需要处理数据收发、连接异常通知即可
    • 数据包将更为紧凑
  2. 关闭 TCP 的 KeepAlive,完全使用应用层心跳保活机制。由应用掌管心跳,更灵活可控,比如可以在应用级别设置心跳周期,适配私有协议。
  3. 业务心跳 + TCP KeepAlive 一起使用,互相作为补充,但 TCP 保活探测周期和应用的心跳周期要协调,以互补方可,不能够差距过大,否则将达不到设想的效果。

各个框架的设计都有所不同,例如 Dubbo 使用的是方案三,但阿里内部的 HSF 框架则没有设置 TCP 的 KeepAlive,仅仅由应用心跳保活。和心跳策略一样,这和框架整体的设计相关。

相关 [tcp 心跳] 推荐:

netty实现tcp长连接和心跳检测

- - 开源软件 - ITeye博客
       通过netty实现服务端与客户端的长连接通讯,及心跳检测.        基本思路:netty服务端通过一个Map保存所有连接上来的客户端SocketChannel,客户端的Id作为Map的key. 每次服务器端如果要向某个客户端发送消息,只需根据ClientId取出对应的SocketChannel,往里面写入message即可.

聊聊 TCP 长连接和心跳那些事

- - IT瘾-tuicool
可能很多 Java 程序员对 TCP 的理解只有一个三次握手,四次握手的认识,我觉得这样的原因主要在于 TCP 协议本身稍微有点抽象(相比较于应用层的 HTTP 协议);其次,非框架开发者不太需要接触到 TCP 的一些细节. 其实我个人对 TCP 的很多细节也并没有完全理解,这篇文章主要针对微信交流群里有人提出的长连接,心跳的问题,做一个统一的整理.

tcp/ip调优

- Lucseeker - 在路上
在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接. 第一次握手:建立连接时,客户端发送syn包(syn=x)到服务器,并进入SYN_SEND状态,等待服务器确认;. 第二次握手:服务器收到syn包,必须确认客户的SYN(ack=x+1),同时自己也发送一个SYN包(syn=y),即SYN+ACK包,此时服务器进入SYN_RECV状态;.

浅谈TCP优化

- - 火丁笔记
很多人常常对 TCP优化有一种雾里看花的感觉,实际上只要理解了TCP的运行方式就能掀开它的神秘面纱. Ilya Grigorik 在「 High Performance Browser Networking」中做了很多细致的描述,让人读起来醍醐灌顶,我大概总结了一下,以期更加通俗易懂. 传输数据的时候,如果发送方传输的数据量超过了接收方的处理能力,那么接收方会出现丢包.

TCP报文结构

- - 互联网 - ITeye博客
一、TCP报文结构如下:.  固定首部长度为20字节,可变部分0~40字节,各字段解释:. source port number:源端口,16bits,范围0~65525. target port number:目的端口,16bits,范围同上. sequence number:数据序号,32bits,TCP 连接中传送的数据流中的每一个字节都编上一个序号.

TCP 状态变化

- - 互联网 - ITeye博客
关闭socket分为主动关闭(Active closure)和被动关闭(Passive closure)两种情况. 前者是指有本地主机主动发起的关闭;而后者则是指本地主机检测到远程主机发起关闭之后,作出回应,从而关闭整个连接. 将关闭部分的状态转移摘出来,就得到了下图:. 通过图上,我们来分析,什么情况下,连接处于CLOSE_WAIT状态呢.

TCP/IP分享——链路层

- Goingmm - 弯曲评论
在张国荣自尽8周年纪念日,也就是愚人节的前几十分钟,终于把第二章弄完了. 首席似乎不是特别有空,我就斗胆在这里自己发了,从前面2期的反响来看,相当热烈,我也是摆出一副要杀要剐,悉听尊便的架势,这可能是受最近流行霸气外露的影响,批评几句又伤不了皮毛,也影响不了我的工作和正常生活,只要给大家带来快乐,我就很开心,似乎历史上很多想法都是在争吵中诞生的.

TFO(tcp fast open)简介

- chenqj - pagefault
原创文章,转载请注明: 转载自pagefault. 本文链接地址: TFO(tcp fast open)简介. 这个是google的几个人提交的一个rfc,是对tcp的一个增强,简而言之就是在3次握手的时候也用来交换数据. 这个东西google内部已经在使用了,不过内核的相关patch还没有开源出来,chrome也支持这个了(client的内核必须支持).

TCP/IP重传超时--RTO

- dennis - 一个故事@MySQL DBA
Shared by 子非鱼 安知余(褚霸). 概述:本文讨论主机在发送一个TCP数据包后,如果迟迟没有收到ACK,主机多久后会重传这个数据包. 主机从发出数据包到第一次TCP重传开始,RFC中这段时间间隔称为retransmission timeout,缩写做RTO. 本文会先看看RFC中如何定义RTO,然后看看Linux中如何实现.

TCP协议通讯流程

- - 操作系统 - ITeye博客
服务器调用socket()、bind()、listen()完成初始化后,调用accept()阻塞等待,处于监听端口的状态,客户端调用socket()初始化后,调用connect()发出SYN段并阻塞等待服务器应答,服务器应答一个SYN-ACK段,客户端收到后从connect()返回,同时应答一个ACK段,服务器收到后从accept()返回.