Lyft 如何提升微服务的研发效能(一)

标签: lyft 提升 微服务 | 发表时间:2022-04-05 17:43 | 作者:colstuwjx
出处:http://weekly.dockone.io

【编者按】本系列讲述了 lyft 是如何从本地开发、联调测试以及线上发布等多个环节提升微服务的研发效能,本文是该系列的第一篇。

2018 年底,Lyft 工程团队完成了将原来基于 PHP 的单体架构拆分成一组由 Python 和 Go 组成的微服务。几年下来,微服务架构在允许团队之间相互独立地进行运维和交付服务方面取得了很大的成功。微服务架构带来的关注点分离让我们得以更快地进行实验和交付功能 —— 每天部署数百次 —— 而且为我们提供了一些灵活性:我们可以根据编程语言的偏好选择各自适合的场景,根据服务的重要程度设定更加严格或者宽松的要求,等等。然而,随着工程师、服务和测试案例数量的不断增加,我们的开发工具难以跟上微服务的爆炸式增长,这进一步侵蚀了我们一直努力想要去提升的研发效能。

本系列分成四个部分,它将会介绍服务于 Lyft 工程团队的开发环境是如何支撑从 100 名工程师和少量服务发展到 1000 多名工程师以及数百个服务。我们将会讨论到规模方面带来的挑战,这导致之前建设的大多数环境都不再适用,我们还会介绍到一种主要为重度集成测试服务(通常接近端对端)的测试方案,以支持采用本地优先的方式来单独测试一些组件。


开发及测试环境的历史

我们对综合开发环境的第一次重大投资始于 2015 年,当时我们的工程师人数达到了 100 人。几乎所有的开发仍然围绕着一套单体的 PHP 服务进行,与此同时,一小部分微服务涌现出来,用于不同的用例场景,比如司机入职。

由于存在这样的预期:我们需要服务的工程师和服务数量将会持续增长,迁移到容器无疑是很有意义的。我们的计划是构建一个基于 Docker 的容器编排环境 —— 当时仍然处于起步阶段 —— 首先为开发人员提供测试服务,然后再延伸到生产环境,如此一来我们将可以受益于多租户的工作负载所带来的更低的成本和更快的扩容速度。

通过 Devbox 实现本地开发

Devbox —— Lyft 的盒式开发环境 —— 于 2016 年初上线,随即很快被大多数工程师采用。Devbox 的工作内容是帮助用户管理本地虚拟机 —— 无需他们再去手动安装或者更新软件包、配置 runit 来启动服务,添加共享文件夹等。一旦虚拟机跑起来以后,只需要敲一个命令然后等上几分钟即可实现拉取最新版本的镜像、创建/填充数据库、启动一个 envoy 代理 sidecar,以及其他开始发送请求前需要做的一些准备工作。

相比于之前,这是一次很棒的升级,我们曾经需要为每个开发人员和他们开发的服务组合手动配置一台 EC2 实例,这些配置和更新维护工作太过于乏味。如今,我们第一次采用一种一致的、可重复而且简单的方式来实现跨多个服务的开发。

使用 Onebox 进行远程开发

随着时间的推移,对于可以和其他工程师或者职能人员(比如设计)共享的长期运行时环境的需求很快就变得明显,这便有了 Onebox。Onebox 本质上是跑在一台 ec2 实例上的 Devbox,它带来的一些好处让很多用户纷纷从 Devbox 转投它的阵营。我们将这些 Onebox 托管在一组 r3.4xlarge 型号的 ec2 实例上,这些实例具有 16 个 vCPU 和 122 GiB 内存,比工程师们随身携带的 MacBook Pro 更强大。Onebox 上面可以运行更多的服务,而且下载容器镜像的速度更快(因为跑在 AWS 上),更不用说避免了在笔记本上跑 VirtualBox 然后搞得风扇像喷气发动机一样嗡嗡作响的情况。

image-01

我们有两种不同风格的开发环境,它们都支持运行多个服务

集成测试

除了单元测试之外,Onebox 由于采用的是云基础设施,因此非常适合在 CI 上运行集成测试。一个服务只需要在 manifest.yaml 文件里定义它所需的依赖项组合,CI 将会起一个临时的 Onebox,在上面运行这些服务并在每个拉取请求(PR)上执行对应的测试。许多服务,尤其是更接近移动客户端的组合服务,大都构建了大型集成测试套件来减少故障风险。一些故障的复盘分析往往以添加一组新的集成测试来收尾。有了如此灵活和强大的测试能力,单元测试逐渐退居二线。

name: api
type: service
groups:
- name: integration
members:
- driver_onboarding
- users
tests:
- name: integration
group: integration


定义在 CI 里要运行的集成测试的一个服务示例

预发布环境

Lyft 的预发布环境几乎与生产环境相同 —— 只是作用范围更小,也没有生产数据 —— 这里部署的所有服务最终目的都是要上线到生产环境。虽然它不属于开发环境,但是由于它在端到端测试中发挥着越来越重要的作用,如何建设预发布环境无疑是值得讨论的。

在 2017 年初发布 Devbox 和 Onebox 后不久,我们还解决了另外一种增长问题:压力测试。一些活动导致的拼车流量暴涨,比如新年前夜和万圣节,会暴露我们系统中的瓶颈,这常常会引发故障。为了提前解决这些问题,我们构建了一个模拟海量打车请求的框架。该框架针对我们的生产环境,协调数以万计的不同设定(例如,经常取消订单的洛杉矶司机)的模拟用户并且把 Lyft 当成是一个黑盒子来进行测试。

作为在预发布环境测试模拟框架本身的副产品,我们意识到生成的流量对于一般的端到端测试也很有价值。在预发布环境里不断地演习公共 API 端点为部署提供了一个很好的参考依据。例如,如果部署破坏了乘客下车的 API 端点,那么发起部署的人几乎会立马看到错误日志和告警。模拟框架还会不断为用户、打车、支付等生成最新的数据,从而消除了开发过程中必要的手动测试所需的大部分设置时间。借着压力测试,预发布环境变得比以往任何时候都更加地实际、有用,在一些团队里把 PR 分支部署到那里作为一个统一的地方来获取真实数据的反馈的做法变得十分常见。

转折点

时间线快进到 2020 年 —— 在将 Devbox 和 Onebox 作为容器化开发环境引入到 Lyft 的四年后 —— 尽管我们尽了最大地努力,"Lyft-in-a-box" 风格的环境变得越来越难以跟上我们的发展。使用这些环境的工程师增加了十倍,现在有数百个微服务为更复杂的业务提供动力。 尽管这套方案针对一些依赖关系比较简单的服务开发仍然相当有效,但是绝大多数的开发工作都是围绕着那些已经建立了一棵庞大复杂的依赖关系树的服务上 —— 这使得在 CI 上启动环境或者运行测试变得异常缓慢。

虽然这些环境和测试功能 曾经十分强大也很方便,但是突破临界点之后已经是弊大于利了。我们构建了一套针对测试少数服务进行了优化的系统,然而并没有就服务的数量重新评估我们的策略 —— 这个数字伴随着我们拆分 PHP 单体架构而加速增长 —— 从 5 增加到 50、50 增加到 100 甚至更多。为了开发去支撑这么多服务不仅需要付出巨大的努力来维护和扩容,而且还会因为他们被迫要去考虑整个系统而不是一次只考虑一个组件,如此进一步大规模降低了开发人员的生产力。

我们不妨详细研究一下这个问题的几个方面:

可扩展性

由于涉及的资源数量庞大而且存在和类生产环境的差异,Onebox 环境在突破某个临界点之后就会变得不再实用。比如,在数百个环境之间运行一套相同的可观察性工具是不可行的。当出现问题时,很难查清楚问题的根因(已经运行的 70 个服务里,哪一个行为不一致?),人们往往会在放弃和测试预发布环境之前多点几次 "reset" 按钮。

预发布环境,从另一个角度来说,既易于扩展,也更加忠实地反映了生产环境。它提供相同的日志记录( logging )、链路追踪( tracing )和指标( metrics )功能来帮助调试。部署到一套共享的预发布环境里进行测试的最主要缺点是:(1)一些实验性质的变动可能会干扰到使用该环境的其他用户;(2)每个服务同一时间只能有效测试一个变更;以及(3)需要更长的时间(分钟级)来构建和部署,而不仅仅只是同步代码和热加载(秒级单位)。

可维护性

由于上面提到的可扩展性挑战,维护和优化这些环境也花费了不少时间,以至于随着时间的推移,这套技术栈也显得过时了。生产和预发布环境已经迁到 Kubernetes 上进行容器编排,同时也切换到了更加精简的单进程容器镜像。开发环境使用了更重的多进程镜像,它们一般绑定了一些 sidecar 和其他基础设施组件(监控指标、日志等),这使得镜像的构建和下载速度变得更慢。

每周都会发生因为变更导致的故障,它们尽管不妨碍预发布或者生产环境,但是却影响着开发环境。由于大多数开发人员用的大都是常见的服务,因此一个服务如果出问题,影响面会很大。有些团队已经将所有的端到端测试转移到了预发布环境,把他们在开发环境部署的服务丢在那里,这一事实加剧了这种情况。

所有权

开发环境里一些问题的归属( Ownership )并不清晰。谁应该负责修复那些出问题的指定服务?启动 Onebox 的人、服务的所有者还是开发基础架构( Developer Infra )团队? 在实践中,这经常落到开发基础架构团队的头上,他们其实没有能力诊断和解决特定于应用程序的问题(例如,改了一个配置项导致应用程序在启动时崩溃)。

臃肿的测试

笨拙的集成测试套件严重消耗了开发生产力。运行时间长达一个小时的测试套件司空见惯,它们一般跑在一套复杂的分片式基础设施上,并且支持自动重试,这样设计是想给不稳定的环境填坑。导致这种情况的两个主要因素是依赖关系和测试本身的不断膨胀。传递性质的依赖会在服务所有者不注意的情况下逐渐增加,在统一的 30s 时间块里吃掉一部分的测试时间。测试套件本身的体积也在稳步增长,因为尽管我们会在出现问题时立即加上对应的测试用例,却很少会在现有的测试用例已经满足目的的前提下把它删掉。

那么,我们为什么要在合并 PR 前付出这个等待时间的成本?当然是因为这些测试会在它们投入生产之前帮助捕获错误了!但是实践过程中通过仔细检查,我们发现这个说法并不那么站得住脚。通过分析一些开发最活跃的服务对应的集成测试,我们发现,80% 或者甚至更多的测试,要么是不必要的(比如已经过时,或者和现有的测试用例重复了),要么是可以在很短的时间内重写成无需外部依赖即可运行。当测试报错了,绝大多数都是误报 —— 我们还得花上几个小时的调试时间 —— 其余的通常会在造成生产环境影响之前,在预发布环境或者金丝雀环境被发现。

```

2013 (monolith), duration: 1 minute

def test_driver_approval():
"""
Requires:
- api
"""
user = get_user()
approve_driver(user)
assert user.is_approved

------------------------------------------------------------

2015 (mostly monolithic, a few services), duration: 3 minutes

def test_driver_approval():
"""
Requires:
- api (monolith)
- users
- mongodb
- driver_onboarding
- mongodb
- redis
"""
user = user_service.create_user()
user = driver_onboarding_service.approve_driver(user)
assert user.is_approved

------------------------------------------------------------

2018 (post-decomp, microservices), duration: 20 minutes

def test_driver_approval__california():
"""
Requires:
- users
- redis
- experimentation
- fraud
- dynamodb
- messaging
- mongodb
- driver_onboarding
- messaging
- email
- experimentation
- dmv_checks
- vehicles
- payments
"""
user = user_service.create_user()
user = driver_onboarding_service.approve_driver(user)
assert user.is_approved

def test_driver_approval__newyork():
# ...
def test_driver_approval__montreal():
# ...
```

随着我们继续拆分新的微服务,集成测试变得更加笨拙

改变路线

大约在一年前,我们开始着手把我们的开发环境迁移到 Kubernetes ,自那以后,工程资源的变化是我们聚焦和重新审视我们更大方向的催化剂。维护基础设施以支持这些按需环境的成本变得过于高昂,而且只会随着时间的推移不断恶化。解决这一问题需要对我们开发和测试微服务的方式进行一次更为彻底的改变。是时候重新搞一套替代方案(对于由数百个微服务组成的系统而言必须是可持续发展的)来替换之前跑在 CI 上的 Devbox、Onebox 和集成测试了。

在仔细调研开发人员是如何使用现有环境之后,我们确定了三个关键工作流程(在下图中以紫色表示),维护这些工作流程至关重要并且需要一些投入:

image-02

  1. 本地开发:对于任何给定的服务,运行单元测试或启动 Web 服务器然后发送请求都应该是简单、超快的。

  2. 手动的端到端测试:测试指定的变更在更大的系统里的执行情况是许多工程师依赖的关键工作流程。我们希望扩展预发布环境,从而让开发人员能够更轻松、更安全地以一个相对隔离的方式进行测试。

  3. 自动化端到端测试:尽管不能过度依赖这种测试,但如果没有自动化 E2E 测试提供的信心,我们就无法每天持续交付数百次的变更。我们将保留一小部分有价值的测试作为验收测试 —— 在部署到生产期间运行的测试。


本系列的后续帖子将深入探讨这三个领域中的每一个部分,包括讨论问题域、我们如何解决这些问题以及我们从中学到了什么。查看关于 本地开发下一篇文章,它将分享更多关于我们在本地开发时用于检查、模拟和魔改网络请求的工具。

原文链接: scaling-productivity-on-microservices-at-lyft-part-1

相关 [lyft 提升 微服务] 推荐:

Lyft 如何提升微服务的研发效能(一)

- - DockOne.io
【编者按】本系列讲述了 lyft 是如何从本地开发、联调测试以及线上发布等多个环节提升微服务的研发效能,本文是该系列的第一篇. 2018 年底,Lyft 工程团队完成了将原来基于 PHP 的单体架构拆分成一组由 Python 和 Go 组成的微服务. 几年下来,微服务架构在允许团队之间相互独立地进行运维和交付服务方面取得了很大的成功.

到了美国才能懂的Square、Instagram、Lyft

- - 创业邦
   本文原载于微信公众账号“Fay的二次学习日记”(faydiary),原题目为 《那些我曾经没看懂的美国Startup》,稍有删减.   今天来说说来美国之后发现自己曾经其实没懂的美国Startup们——Square, Instagram, Lyft. 当然,以下只是一家之言,旨在提供一个不同视角.

初识微服务

- - ITeye博客
微服务架构越来越火,有必要学习一下. 软件开发过程中碰到什么问题. 一个简单的应用会随着时间推移逐渐变大. 在每次的sprint中,开发团队都会面对新“故事”,然后开发许多新代码. 几年后,这个小而简单的应用会变成了一个巨大的怪物. 一旦你的应用变成一个又大又复杂的怪物,那开发团队肯定很痛苦. 敏捷开发和部署举步维艰,其中最主要问题就是这个应用太复杂,以至于任何单个开发者都不可能搞懂它.

谈微服务架构

- - 人月神话的BLOG
其实在前面很多文章谈到SOA,特别是系统内的SOA和组件化的时候已经很多内容和微服务架构思想是相同的,对于微服务架构,既然出现了这个新名称,那就再谈下微服务架构本身的一些特点和特性. 从这个图可以看到微服务架构的第一个重点,即业务系统本身的组件化和服务化,原来开发一个业务系统本身虽然分了组件和模块,但是本质还是紧耦合的,这关键的一个判断标准就是如果要将原有的业务系统按照模块分开部署到不同的进程里面并完成一个完整业务系统是不可能实现的.

微服务性能模式

- - 互联网 - ITeye博客
前言:基于微服务系统越来越普遍. 下面我们就来看看五种常见的特定微服务性能的挑战,以及如何应解他们. 背景:在IT界微服务架构为基础的系统越来越多, 每一个应用系统都集成了不同的组件和服务,几乎所有的特定业务应用程序都需要集成一个或更多的应用服务. 但是一个综合性系统集成不同的服务这无疑是一个巨大的挑战.

微服务与架构师

- - 乱象,印迹
因为工作的关系,最近面试了很多软件架构师,遗憾的是真正能录用的很少. 很多候选人有多年的工作经验,常见的框架也玩得很溜. 然而最擅长的是“用既定的技术方案去解决特定的问题”,如果遇到的问题没有严格对应的现成框架,就比较吃力. 这样的技能水平或许适合某些行业,但很遗憾不符合我们的要求. 软件架构师到底应该做什么,又为什么这么难做好,这都是近来的热门问题,我也一直在和朋友们讨论.

从Excel到微服务

- - 乱象,印迹
Excel很老,Excel很土,Excel一点也不sexy;微服务新,微服务很潮门,微服务很高大上. 那么,Excel和微服务有什么关系. 上个月看了篇文章,The Unbunlding of Excel. 作者认为,对于初创公司(尤其是非“纯IT”初创公司)来说,Excel几乎包办各种工作. 想做轻量级的CRM,可用Excel.

微服务拆分之道

- - DockOne.io
微服务在最近几年大行其道,很多公司的研发人员都在考虑微服务架构,同时,随着 Docker 容器技术和自动化运维等相关技术发展,微服务变得更容易管理,这给了微服务架构良好的发展机会. 在做微服务的路上,拆分服务是个很热的话题. 我们应该按照什么原则将现有的业务进行拆分. 接下来一起谈谈服务拆分的策略和坚持的原则.

微服务之saga模式

- -
你已经使用 database ber service 模式. 每个service拥有自己的database. 一些业务事务会跨越多个service,所以你需要来确保data consistency. 例如,假设你正在构建一个电子商务网站,这个网站的用户的会有一个最大欠款限制,应用程序必须确保一个新订单不能超过用户的最大前款限制,但是orders表和customers表不在同一个数据库,所以应用程序不能简单的使用本地的ACID事务.

微服务框架Spring Cloud介绍 Part2: Spring Cloud与微服务

- - skaka的博客
之前介绍过 微服务的概念与Finagle框架, 这个系列介绍Spring Cloud.. Spring Cloud还是一个相对较新的框架, 今年(2016)才推出1.0的release版本. 虽然Spring Cloud时间最短, 但是相比我之前用过的Dubbo和Finagle, Spring Cloud提供的功能最齐全..