Google Percolator替代MapReduce

标签: google | 发表时间:2010-09-26 18:52 | 作者:blackhat Hao
出处:http://solidot.org/
Google在新一代内容索引系统中放弃了MapReduce,替代者是尚不为人知的分布式数据处理系统Percolator。 The Register报道,Percolator是一种增量处理平台,它能持续更新索引系统,无需从头重新处理一遍整个系统。Google的工程师计划在下个月举行的年度USENIX Symposium 会议上公布Percolator相关论文。为了提高效率,MapReduce和其它批量处理系统创造了大数据批量,因此无法处理单个小规模的数据更新。Percolator系统便是为了解决这一问题,它能对一个大数据集增量处理更新。用Percolator替代MapReduce,每天处理相同数量的文档,能在搜索结果中将文档平均年龄(average age)减少50%。

相关 [google percolator mapreduce] 推荐:

Google Percolator替代MapReduce

- Hao - Solidot
Google在新一代内容索引系统中放弃了MapReduce,替代者是尚不为人知的分布式数据处理系统Percolator. The Register报道,Percolator是一种增量处理平台,它能持续更新索引系统,无需从头重新处理一遍整个系统. Google的工程师计划在下个月举行的年度USENIX Symposium 会议上公布Percolator相关论文.

Mapreduce小结

- MAGI-CASPER/Peter Pan - 博客园-唯有前进值得敬仰
读完mapreduce论文小结一下. 1.MapReduce是一个编程模型,封装了并行计算、容错、数据分布、负载均衡等细节问题. 输入是一个key-value对的集合,中间输出也是key-value对的集合,用户使用两个函数:Map和Reduce. Map函数接受一个输入的key-value对,然后产生一个中间key-value 对的集合.

Hadoop MapReduce技巧

- - 简单文本
我在使用Hadoop编写MapReduce程序时,遇到了一些问题,通过在Google上查询资料,并结合自己对Hadoop的理解,逐一解决了这些问题. Hadoop对MapReduce中Key与Value的类型是有要求的,简单说来,这些类型必须支持Hadoop的序列化. 为了提高序列化的性能,Hadoop还为Java中常见的基本类型提供了相应地支持序列化的类型,如IntWritable,LongWritable,并为String类型提供了Text类型.

MapReduce原理

- - C++博客-牵着老婆满街逛
       MapReduce 是由Google公司的Jeffrey Dean 和 Sanjay Ghemawat 开发的一个针对大规模群组中的海量数据处理的分布式编程模型. MapReduce实现了两个功能. Map把一个函数应用于集合中的所有成员,然后返回一个基于这个处理的结果集. 而Reduce是把从两个或更多个Map中,通过多个线程,进程或者独立系统并行执行处理的结果集进行分类和归纳.

MapReduce优化

- - 行业应用 - ITeye博客
相信每个程序员在 编程时都会问自己两个问题“我如何完成这个任务”,以及“怎么能让程序运行得更快”. 同样,MapReduce计算模型的多次优化也是为了更好地解答这两个问题. MapReduce计算模型的优化涉及了方方面面的内容,但是主要集中在两个方面:一是计算性能方面的优化;二是I/O操作方面的优化.

Spark与Mapreduce?

- - 崔永键的博客
我本人是类似Hive平台的系统工程师,我对MapReduce的熟悉程度是一般,它是我的底层框架. 我隔壁组在实验Spark,想将一部分计算迁移到Spark上. 年初的时候,看Spark的评价,几乎一致表示,Spark是小数据集上处理复杂迭代的交互系统,并不擅长大数据集,也没有稳定性. 但是最近的风评已经变化,尤其是14年10月他们完成了Peta sort的实验,这标志着Spark越来越接近替代Hadoop MapReduce了.

下一代Hadoop MapReduce

- Jia - NoSQLFan
本文来自Hadoop Summit大会的一个演讲稿,主讲是Hadoop核心开发团队的Arun C Murthy (@acmurthy),同时他也是Yahoo!刚刚剥离的Hadoop独立公司Hortonworks的 Founder和架构师. 演讲中他讲述了现在的Hadoop存在的一些问题和集群上限,并展望了下一代Hadoop和其MapReduce将会得到的巨大提升.

MapReduce执行流程

- - CSDN博客云计算推荐文章
MapReduce的大体流程是这样的,如图所示:. 由图片可以看到mapreduce执行下来主要包含这样几个步骤. 1.首先对输入数据源进行切片. 2.master调度worker执行map任务. 3.worker读取输入源片段. 4.worker执行map任务,将任务输出保存在本地. 5.master调度worker执行reduce任务,reduce worker读取map任务的输出文件.

MapReduce编程模型

- - CSDN博客云计算推荐文章
MapReduce是一个Google发明的编程模型,也是一个处理和生成超大规模数据集的算法模型的相关实现. 用户首先创建一个Map函数处理一个基于对的数据集合,输出的中间结果基于对的数据集合,然后再创建一个Reduce函数用来合并所有的具有相同中间Key值的中间Value值.

MapReduce - 性能调优

- - CSDN博客云计算推荐文章
        Hadoop为用户作业提供了多种可配置的参数,以允许用户根据作业特点调整这些参数值使作业运行效率达到最优.         对于一大批MapReduce程序,如果可以设置一个Combiner,那么对于提高作业性能是十分有帮助的. Combiner可减少Map Task中间输出的结果,从而减少各个Reduce Task的远程拷贝数据量,最终表现为Map Task和Reduce Task执行时间缩短.