如何编写Hadoop调度器
1. 编写目的
在Hadoop中,调度器是一个可插拔的模块,用户可以根据自己的实际应用要求设计调度器,然后在配置文件中指定相应的调度器,这样,当Hadoop集群启动时,便会加载该调度器。当前Hadoop自带了几种调度器,分别是FIFO(默认调度器),Capacity Scheduler和FairScheduler,通常境况下,这些调度器很难满足公司复杂的应用需求,因而往往需要开发自己的调度器。本文介绍了Hadoop调度器的基本编写方法。
2. Hadoop调度框架
Hadoop的调度器是在JobTracker中加载和调用的,用户可以在配置文件mapred-site.xml中的mapred.jobtracker.taskScheduler属性中指定调度器。本节分析了Hadoop调度器的调度框架,实际上分析了两个重要类:TaskScheduler和JobTracker的关系。
(1) TaskScheduler
如果用户要编写自己的调度器,需要继承抽象类TaskScheduler,该类的接口如下:
abstract class TaskScheduler implements Configurable { protected Configuration conf; //配置文件 protected TaskTrackerManager taskTrackerManager; //一般会设为JobTracker public Configuration getConf() { return conf; } public void setConf(Configuration conf) { this.conf = conf; } public synchronized void setTaskTrackerManager( TaskTrackerManager taskTrackerManager) { this.taskTrackerManager = taskTrackerManager; } public void start() throws IOException { //初始化函数,如加载配置文件等 // do nothing } public void terminate() throws IOException { //结束函数 // do nothing } //最重要的函数,为该taskTracker分配合适的task public abstract List<Task> assignTasks(TaskTrackerStatus taskTracker) throws IOException; //根据队列名字获job列表 public abstract Collection<JobInProgress> getJobs(String queueName); }
(2) JobTracker
JobTracker是Hadoop最核心的组件,它监控整个集群中的作业运行情况并对资源进行管理和调度。
每个TaskTracker每个3s(默认值,可配置)通过heartbeat向JobTracker汇报自己管理的机器的一些基本信息,包括内存使用量,内存剩余量,正在运行的task,空闲的slot数目等,一旦JobTracker发现该TaskTracker出现了空闲的slot,便会调用调度器中的AssignTasks方法为该TaskTracker分配task。
下面分析JobTracker调用TaskScheduler的具体流程:
…… private final TaskScheduler taskScheduler; //声明调度器对象 …… public static JobTracker startTracker(JobConf conf, String identifier) { ……. result = new JobTracker(conf, identifier); result.taskScheduler.setTaskTrackerManager(result); //设置调度器的manager …… } //创建调度器 JobTracker(JobConf conf, String identifier) { …… // Create the scheduler Class<? extends TaskScheduler> schedulerClass = conf.getClass("mapred.jobtracker.taskScheduler", JobQueueTaskScheduler.class, TaskScheduler.class); taskScheduler = (TaskScheduler) ReflectionUtils.newInstance(schedulerClass, conf); ….. } //run forever public void offerService() { …… taskScheduler.start(); //启动调度器 …… } 。。。。。 HeartbeatResponse heartbeat(TaskTrackerStatus status, boolean restarted, boolean initialContact, boolean acceptNewTasks, short responseId) { ……. // Check for new tasks to be executed on the tasktracker if (recoveryManager.shouldSchedule() && acceptNewTasks && !isBlacklisted) { …… //使用调度器,为该taskTracker分配作业 tasks = taskScheduler.assignTasks(taskTrackerStatus); …… } }
从上面的分析可以知道,Scheduler和JobTracker之间会相互包含(实际上是组合模式),Scheduler中要包含JobTracker(实际上就是TaskTrackerManager)对象,以便获取整个Hadoop集群的一些信息,如slot总数,QueueManager对象,添加JobInProgressListener以便增加或删除job时,通知Scheduler;JobTracker中要包含Scheduler对象,以便可以对每个TaskTracker分配task。
3. 编写Hadoop调度器
假设我们要编写一个新的调度器,为MyHadoopScheduler,需要进行以下工作:
(1) 用户需要自己实现的类
@ MyHadoopSchedulerConf:配置文件管理类,读取你自己的配置文件,并保存到合适的数据结构中,一般而言,这个类应该支持动态加载配置文件。
@ MyHadoopSchedulerListener:编写自己的JobInProgressListener,并调用JobTracker的addJobInProgressListener(),将之加到系统的Listener队列中,以便系统中添加或删除job后,JobTracker可立刻告诉调度器。
@ MyHadoopScheduler:调度器的核心实现算法
(2) 用户要用到的系统类
@ JobTracker:JobTracker在startTracker函数中,会将MyHadoopScheduler的taskTrackerManager赋值为JobTracker对象,这样,在MyHadoopScheduler中,可调用Jobracker中的所有public方法和成员变量,常用的有:
$ getClusterStatus():获取集群的状态,如tasktracker列表,map slot总数,reduce slot总数,当前正在运行的map/reduce task总数等
$ getQueueManager():如果MyHadoopScheduler支持多队列,那么需要使用该方法获取QueueManager对象,通过该对象,会用可以获取系统的所有队列名称,每个队列的ACL(Access Control List),具体参考:http://hadoop.apache.org/common/docs/current/service_level_auth.html
$ killJob:可以调用该函数杀死某个job
$ killTask:如果调度器支持资源抢占,可调用该函数 杀死某个task以便进行资源抢占。
@ JobInprogress:用户向Hadoop中提交一个job后,Hadoop会为该job创建一个叫JobInProgress的对象,该对象中包含了job相关的基本信息,且它会伴随某个job的一生(与job共存亡)。该对象中包含的job信息有:该job包含的所有task的信息(如:正在运行的task列表,已经完成的task列表,尚未运行的task列表等),作业的优先级,作业的提交时间,开始运行时间,运行结束时间等信息。
在JobInprogress的task列表中,每个task以对象TaskInProgress的形式保存,该对象中包含了每个task的基本信息,包括:task要处理的数据split,task创建时间,task开始执行时间,task结束时间等信息。这些信息肯定会在调度器中使用。
@ JobConf
每个作业的运行参数和配置选项被保存到一个JobConf对象中,该对象包含了配置文件mapred-site.xml,core-site.xml和hdfs-site.xml设置的选项和该作业的特有属性(用户名,InputFormat,Mapper等),一般是以key/value的形式保存,比如:想获取当前用户名,可以这样:
JobConf conf; ……. String username = conf.get("user.name");
用户也可以通过该对象传递一些自己定义的全局属性,如用户自己定义了一个属性叫mapred.job.deadline(作业的deadline时间),用户可以在提交作业时设定该值:
hadoop jar hadoop-examples.jar wordcount -files cachefile.txt \
-D mapred.job.deadline=100000 \
input output
然后在调度器中这样获取该属性的值:
JobConf conf; ……. int deadline=conf.getInt("mapred.job.deadline", -1); //获取mapred.job.deadline属性,如果没有设置,则返回-1
4. 总结
调度器是Hadoop的中枢,其重要性可想而知。用户如果要设计Hadoop调度器,需要对Hadoop的整个框架有比较深入的理解,同时需阅读一些很重要的类(如JobTracker和JobInprogress等)的源码,以便利用这些类完成你的调度算法。
Hadoop目前自带了三个比较常用的调度器,分别为JobQueueTaskScheduler (FIFO,但队列调度器),Capacity Scheduler(多队列多用户调度器)和Fair Scheduler(多队列多用户调度器),它们是你学习Hadoop调度器的最好资料。
5. 参考资料
(1) Hadoop-0.20.2源代码
原创文章,转载请注明: 转载自董的博客
本文链接地址: http://dongxicheng.org/mapreduce/how-to-write-hadoop-schedulers/