RSA算法原理(二)

标签: Computer | 发表时间:2013-07-04 12:07 | 作者:阮一峰
出处:http://www.ruanyifeng.com/blog/

上一次,我介绍了一些 数论知识

有了这些知识,我们就可以看懂 RSA算法。这是目前地球上最重要的加密算法。

六、密钥生成的步骤

我们通过一个例子,来理解RSA算法。假设 爱丽丝要与鲍勃进行加密通信,她该怎么生成公钥和私钥呢?

第一步,随机选择两个不相等的质数p和q。

爱丽丝选择了61和53。(实际应用中,这两个质数越大,就越难破解。)

第二步,计算p和q的乘积n。

爱丽丝就把61和53相乘。

  n = 61×53 = 3233

n的长度就是密钥长度。3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。实际应用中,RSA密钥一般是1024位,重要场合则为2048位。

第三步,计算n的欧拉函数φ(n)。

根据公式:

  φ(n) = (p-1)(q-1)

爱丽丝算出φ(3233)等于60×52,即3120。

第四步,随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质。

爱丽丝就在1到3120之间,随机选择了17。(实际应用中,常常选择65537。)

第五步,计算e对于φ(n)的模反元素d。

所谓 "模反元素"就是指有一个整数d,可以使得ed被φ(n)除的余数为1。

  ed ≡ 1 (mod φ(n))

这个式子等价于

  ed - 1 = kφ(n)

于是,找到模反元素d,实质上就是对下面这个二元一次方程求解。

  ex + φ(n)y = 1

已知 e=17, φ(n)=3120,

  17x + 3120y = 1

这个方程可以用 "扩展欧几里得算法"求解,此处省略具体过程。总之,爱丽丝算出一组整数解为 (x,y)=(2753,-15),即 d=2753。

至此所有计算完成。

第六步,将n和e封装成公钥,n和d封装成私钥。

在爱丽丝的例子中,n=3233,e=17,d=2753,所以公钥就是 (3233,17),私钥就是(3233, 2753)。

实际应用中,公钥和私钥的数据都采用 ASN.1格式表达( 实例)。

七、RSA算法的可靠性

回顾上面的密钥生成步骤,一共出现六个数字:

  p
  q
  n
  φ(n)
  e
  d

这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。

那么,有无可能在已知n和e的情况下,推导出d?

  (1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。

  (2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。

  (3)n=pq。只有将n因数分解,才能算出p和q。

结论:如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。

可是,大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。维基百科这样写道:

  "对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

  假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。

  只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"

举例来说,你可以对3233进行因数分解(61×53),但是你没法对下面这个整数进行因数分解。

  12301866845301177551304949
  58384962720772853569595334
  79219732245215172640050726
  36575187452021997864693899
  56474942774063845925192557
  32630345373154826850791702
  61221429134616704292143116
  02221240479274737794080665
  351419597459856902143413

它等于这样两个质数的乘积:

  33478071698956898786044169
  84821269081770479498371376
  85689124313889828837938780
  02287614711652531743087737
  814467999489
    ×
  36746043666799590428244633
  79962795263227915816434308
  76426760322838157396665112
  79233373417143396810270092
  798736308917

事实上,这大概是人类已经分解的最大整数(232个十进制位,768个二进制位)。比它更大的因数分解,还没有被报道过,因此目前被破解的最长RSA密钥就是768位。

八、加密和解密

有了公钥和密钥,就能进行加密和解密了。

(1)加密要用公钥 (n,e)

假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。这里需要注意,m必须是整数(字符串可以取ascii值或unicode值),且m必须小于n。

所谓"加密",就是算出下式的c:

  m e ≡ c (mod n)

爱丽丝的公钥是 (3233, 17),鲍勃的m假设是65,那么可以算出下面的等式:

  65 17 ≡ 2790 (mod 3233)

于是,c等于2790,鲍勃就把2790发给了爱丽丝。

(2)解密要用私钥(n,d)

爱丽丝拿到鲍勃发来的2790以后,就用自己的私钥(3233, 2753) 进行解密。可以证明,下面的等式一定成立:

  c d ≡ m (mod n)

也就是说,c的d次方除以n的余数为m。现在,c等于2790,私钥是(3233, 2753),那么,爱丽丝算出

  2790 2753 ≡ 65 (mod 3233)

因此,爱丽丝知道了鲍勃加密前的原文就是65。

至此,"加密--解密"的整个过程全部完成。

我们可以看到,如果不知道d,就没有办法从c求出m。而前面已经说过,要知道d就必须分解n,这是极难做到的,所以RSA算法保证了通信安全。

你可能会问,公钥(n,e) 只能加密小于n的整数m,那么如果要加密大于n的整数,该怎么办?有两种解决方法:一种是把长信息分割成若干段短消息,每段分别加密;另一种是先选择一种"对称性加密算法"(比如 DES),用这种算法的密钥加密信息,再用RSA公钥加密DES密钥。

九、私钥解密的证明

最后,我们来证明,为什么用私钥解密,一定可以正确地得到m。也就是证明下面这个式子:

  c d ≡ m (mod n)

因为,根据加密规则

  m e ≡ c (mod n)

于是,c可以写成下面的形式:

  c = m e - kn

将c代入要我们要证明的那个解密规则:

  (m e - kn) d ≡ m (mod n)

它等同于求证

  m ed ≡ m (mod n)

由于

  ed ≡ 1 (mod φ(n))

所以

  ed = hφ(n)+1

将ed代入:

  m hφ(n)+1 ≡ m (mod n)

接下来,分成两种情况证明上面这个式子。

(1)m与n互质。

根据欧拉定理,

  m φ(n) ≡ 1 (mod n)

得到

  (m φ(n)) h × m ≡ m (mod n)

原式得到证明。

(2)m与n不是互质关系。

由于n等于质数p和q的乘积,所以m必然等于kp或kq。

以 m = kp为例,考虑到这时k与q必然互质,则根据欧拉定理,下面的式子成立:

  (kp) q-1 ≡ 1 (mod q)

进一步得到

  [(kp) q-1] h(p-1) × kp ≡ kp (mod q)

  (kp) ed ≡ kp (mod q)

将它改写成下面的等式

  (kp) ed = tq + kp

这时t必然能被p整除,即 t=t'p

  (kp) ed = t'pq + kp

因为 m=kp,n=pq,所以

  m ed ≡ m (mod n)

原式得到证明。

(完)

文档信息

相关 [rsa 算法 原理] 推荐:

RSA算法原理(二)

- - 阮一峰的网络日志
上一次,我介绍了一些 数论知识. 有了这些知识,我们就可以看懂 RSA算法. 这是目前地球上最重要的加密算法. 我们通过一个例子,来理解RSA算法. 假设 爱丽丝要与鲍勃进行加密通信,她该怎么生成公钥和私钥呢. 第一步,随机选择两个不相等的质数p和q. (实际应用中,这两个质数越大,就越难破解.

RSA算法原理(一)

- - 阮一峰的网络日志
如果你问我,哪一种 算法最重要. 我可能会回答 "公钥加密算法". 因为它是计算机通信安全的基石,保证了加密数据不会被破解. 你可以想象一下,信用卡交易被破解的后果. 进入正题之前,我先简单介绍一下,什么是"公钥加密算法". 1976年以前,所有的加密方法都是同一种模式:.   (1)甲方选择某一种加密规则,对信息进行加密;.

一个基于RSA算法的Java数字签名例子

- - 行业应用 - ITeye博客
  网络数据安全包括数据的本身的安全性、数据的完整性(防止篡改)、数据来源的不可否认性等要素. 对数据采用加密算法加密可以保证数据本身的安全性,利用消息摘要可以保证数据的完整性,但是还有一点就是数据来源的不可否认性(也就是数据来自哪里接收者是清楚的,而且发送数据者不可抵赖).         有些方案曾经使用消息认证码(MAC)来保证数据来源于合法的发送着,但是利用消息认证码会带来一个问题,就是通讯双方必须事先约定两者之间的通讯用共享密码.

Bitmap算法原理

- - 互联网旁观者
【什么是 Bit-map 】. 所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素. 由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节省. 如果说了这么多还没明白什么是Bit-map,那么我们来看一个具体的例子,假设我们要对0-7内的5个元素(4,7,2,5,3)排序(这里假设这些元素没有重复).

RSA的SecureID token数据被偷了?

- ripwu - 张志强的网络日志
博客 » 记事本 » 密码学 ». WSJ报道:RSA承认其数据被偷,4000万SecureID token需要被更新. 中国银行银行密钥用的就是RSA生产,就是下图这玩意儿,手里有这玩意儿的同学们要小心了(当然,如果你的账户里的钱没有6位数以上,也不用太担心,毕竟网银的安全性不全依赖于这个设备):.

RSA Security 被攻破的途徑

- MorrisC - Gea-Suan Lin&#39;s BLOG
今年三月的時候,RSA Security 被攻破,攻擊者順利取得 SecurID 的資料,這些資料很有可能降低 SecurID 的安全性. 也因此有了 Lockheed Martin 被攻擊的事情. 在官方的說明「Anatomy of an Attack」中,有提到「2011 Recruitment plan.xls」是使用 Excel 檔案,加上 Adobe Flash vulnerability (CVE-2011-0609) 攻入,而這是個 0-day attack (在當時).

RSA详细披露网络攻击

- dunqiu - Solidot
在伦敦举行的RSA安全会议上,RSA执行总裁Art Coviello谴责某个国家对它发动网络攻击,RSA总裁Tom Heiser和首席技术官Eddie Schwartz则披露了攻击的更多细节. 协调合作的攻击者伪装成熟人对RSA雇员实施了一系列鱼叉式钓鱼攻击,目的是渗透进公司网络. 他们发送了内嵌有恶意Flash文件的Excel电子表格,利用0day漏洞建立一个入侵的据点,随后再进行组合攻击,获得SecurID数据的访问权限.

JAVA实现RSA加密解密

- - CSDN博客推荐文章
提供加密,解密,生成密钥对等方法. RSA加密原理概述   :. RSA的安全性依赖于大数的分解,公钥和私钥都是两个大素数(大于100的十进制位)的函数. 据猜测,从一个密钥和密文推断出明文的难度等同于分解两个大素数的积   .  1.选择两个大素数 p,q ,计算 n=p*q;   .  2.随机选择加密密钥 e ,要求 e 和 (p-1)*(q-1)互质   .

RSA宣稱SecurID被駭事件是由國家所主導

- delphij - iThome Online
今年3月RSA遭到複雜的駭客攻擊,部份SecurID產品所使用的雙因素認證資料可能外洩,RSA指出,有鑑於該攻擊行動的等級及其所運用的資源,相信背後有國家的支持.

RSA谴责某个国家对它发动网络攻击

- 微笑!?~ - Solidot
安全公司RSA在今年三月遭到黑客攻击,迫使它替换了大约4000万SecurID令牌. 在伦敦举行的RSA安全会议上,RSA执行总裁Art Coviello声称两个为某个国家服务的黑客组织入侵了其服务器,窃取了SecurID相关的信息. RSA没有透露是哪个国家,虽然外界一般相信是中国,但Coviello的声明丝毫没有暗示是中国或幕后策划者是中国.