[译]elasticsearch mapping

标签: | 发表时间:2013-10-31 16:09 | 作者:an74520
分享到:
出处:http://blog.csdn.net/an74520

es的mapping设置很关键,mapping设置不到位可能导致索引重建。如何更好的设置mapping?

请看下面各个类型介绍^_^

core types

每一个JSON字段可以被映射到一个特定的核心类型。JSON本身已经为我们提供了一些输入,支持 stringinteger/ longfloat/ doubleboolean, and  null.

下面的示例tweet的JSON文档将被用来解释核心类型:

{  
    "tweet" {
        "user" : "kimchy"
        "message" : "This is a tweet!",
        "postDate" : "2009-11-15T14:12:12",
        "priority" : 4,
        "rank" : 12.3
    }
}

可以显式映射为上面的JSON tweet:

{  
    "tweet" : {
        "properties" : {
            "user" : {"type" : "string", "index" : "not_analyzed"},
            "message" : {"type" : "string", "null_value" : "na"},
            "postDate" : {"type" : "date"},
            "priority" : {"type" : "integer"},
            "rank" : {"type" : "float"}
        }
    }
}

string

基于文本的字符串类型是最基本的类型,包含一个或多个字符。可以映射一个例子:

{  
    "tweet" : {
        "properties" : {
            "message" : {
                "type" : "string",
                "store" : "yes",
                "index" : "analyzed",
                "null_value" : "na"
            }
        }
    }
}

上面的映射定义一个字符串消息属性/字段在tweet类型。字段存储在索引(所以它稍后可以被检索使用选择性加载搜索时),并得到分析(分解成可搜索条件)。如果该消息有一个空值,那么该值将被存储是na .

下表列出了所有的属性,可以使用字符串类型:

      Attribute                                                                 Description


  index_name                                   字段的名称,将存储在索引中。默认属性/字段名.   


   store                                            设置为yes来存储实际的字段索引,没有不存储它。默认为没                                                            有(注意,JSON文档本身是存储,可以从它检索)。


   index                                            为该领域设置为分析索引和搜索在被分解成令牌使用分析                                                              仪。不分析意味着其仍可搜索,但没有经过任何分析过程或分                                                          解为令牌。不意味着它不会搜索(作为一个单独字段,它可能仍                                                        然被包括在所有)。设置没有禁用包含在所有。默认为分析。 


  term_vector                                  可能的值是不,是的,与补偿,与职位,与位置偏移。默认为没                                                              有。


   boost                                            该boost的值,默认是1.0。


   null_value                                   当有一个(JSON)null值的字段,可以使用null值的字段值。默认                                                        为不添加字段在所有。 


   omit_norms                                   布尔值如果规范应该省略或不是。默认值为假的分析领域,适                                                          用于不分析领域。


   omit_term_freq_and_positions   布尔值如果术语和位置应该忽略频率。默认值为假。弃用自                                                          0.20,看到指数期权。


   index_options                             自从0.20可用。允许设置索引选项,可能的值是文档(只有doc                                                          数字索引),freqs(doc数字和词的频率),和职位(doc数字,词的频                                                        率和位置)。默认位置分析领域,和文档中没有分析领域。因为                                                        0.90也可以设置偏移量(doc数字,词的频率,位置和补偿)。


   analyzer                                       这个分析仪用于分析文本内容分析时在索引和搜索时使用查                                                          询字符串。默认为全球配置分析仪。

  index_analyzer                            这个分析仪用于分析文本内容分析时在索引。                        


   search_analyzer                          这个分析仪用于分析场当一部分查询字符串。可以更新现有                                                          的字段。


   include_in_all                            应该被包括在这个领域的所有字段(如果启用)。如果索引设置                                                        为无默认值为false,否则,默认为true或父对象类型设置。

   ignore_above                                这个分析器将忽略字符串大于这个尺寸。用于通用不分析领                                                           域,应该忽略长文本。(因为@0.19.9)。

   position_offset_gap                   位置增量字段实例之间的差距与相同的字段名。默认值为0。

字符串类型也支持自定义索引参数相关的索引值。例如:

{  
    "message" : {
        "_value":  "boosted value",
        "_boost":  2.0
    }
}

需要消除歧义的映射文档的含义。否则,该结构将解释“消息”作为“对象”类型的值。键值(或价值)在内部文档指定字符串内容,最终真正应该被编入索引。促进(或提高)键指定每个字段的文档增加(这里是2.0)。

number

许多类型的基础支持浮动,双,字节,短、整数和长。它使用特定的构造在Lucene为了支持数字值。数字类型有相同的范围作为相应的Java类型。一个例子可以映射:

{  
    "tweet" : {
        "properties" : {
            "rank" : {
                "type" : "float",
                "null_value" : 1.0
            }
        }
    }
}

在这里多举几个常用的例子:

例1:当某一个字段要分词搜索, 则index就要设置相应的分词器,store设置为true

例2:当某一个字段要facet(分组统计),则必须设置这个字段为no_analyzerd(不分词);原因是字段不设置分词,默认是一元分词。

例3:搜索关键字相应分数,对一些排名算法有一定的帮助,可以为一些重要字段设置分值(boost)

例4:时间格式问题,es支持format时间格式。(format:yyyy-MM-dd HH:mm:ss.SSS)

……

本文出自  http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-core-types.html#mapping-core-types




作者:an74520 发表于2013-10-31 16:09:15 原文链接
阅读:3532 评论:2 查看评论

相关 [elasticsearch mapping] 推荐:

[译]elasticsearch mapping

- - an74520的专栏
es的mapping设置很关键,mapping设置不到位可能导致索引重建. 请看下面各个类型介绍^_^. 每一个JSON字段可以被映射到一个特定的核心类型. JSON本身已经为我们提供了一些输入,支持 string,  integer/ long,  float/ double,  boolean, and  null..

elasticsearch文档-字段的mapping

- - 开源软件 - ITeye博客
elasticsearch文档-字段的mapping. Mapping是指定义如何将document映射到搜索引擎的过程,比如一个字段是否可以查询以及如何分词等,一个索引可以存储含有不同"mapping types"的documents,ES允许每个mapping type关联多个mapping定义.

elasticsearch更改mapping(不停服务重建索引)

- - zzm
Elasticsearch的mapping一旦创建,只能增加字段,而不能修改已经mapping的字段. 但现实往往并非如此啊,有时增加一个字段,就好像打了一个补丁,一个可以,但是越补越多,最后自己都觉得惨不忍睹了. 这里有一个方法修改mapping,那就是重新建立一个index,然后创建一个新的mapping.

Elasticsearch as Database - taowen - SegmentFault

- -
【北京上地】滴滴出行基础平台部招聘 Elasticsearch 与 Mysql binlog databus 开发工程师. 内推简历投递给: taowen@didichuxing.com. 推销Elasticsearch. 时间序列数据库的秘密(1)—— 介绍. 时间序列数据库的秘密(2)——索引.

ElasticSearch 2 的节点调优(ElasticSearch性能)

- - 行业应用 - ITeye博客
一个ElasticSearch集群需要多少个节点很难用一种明确的方式回答,但是,我们可以将问题细化成一下几个,以便帮助我们更好的了解,如何去设计ElasticSearch节点的数目:. 打算建立多少索引,支持多少应用. elasticsearch版本: elasticsearch-2.x. 需要回答的问题远不止以上这些,但是第五个问题往往是容易被我们忽视的,因为单个ElasticSearch集群有能力支持多索引,也就能支持多个不同应用的使用.

elasticsearch的javaAPI之query

- - CSDN博客云计算推荐文章
elasticsearch的javaAPI之query API. the Search API允许执行一个搜索查询,返回一个与查询匹配的结果(hits). 它可以在跨一个或多个index上执行, 或者一个或多个types. 查询可以使用提供的 query Java API 或filter Java API.

Elasticsearch基础教程

- - 开源软件 - ITeye博客
转自:http://blog.csdn.net/cnweike/article/details/33736429.     Elasticsearch有几个核心概念. 从一开始理解这些概念会对整个学习过程有莫大的帮助.     接近实时(NRT).         Elasticsearch是一个接近实时的搜索平台.

ElasticSearch索引优化

- - 行业应用 - ITeye博客
ES索引的过程到相对Lucene的索引过程多了分布式数据的扩展,而这ES主要是用tranlog进行各节点之间的数据平衡. 所以从上我可以通过索引的settings进行第一优化:. 这两个参数第一是到tranlog数据达到多少条进行平衡,默认为5000,而这个过程相对而言是比较浪费时间和资源的. 所以我们可以将这个值调大一些还是设为-1关闭,进而手动进行tranlog平衡.

elasticsearch集群搭建

- - zzm
之前对于CDN的日志处理模型是从 . 下面先是介绍几个关于elasticsearch的几个名词 . 代表一个集群,集群中有多个节点,其中有一个为主节点,这个主节点是可以通过选举产生的,主从节点是对于集群内部来说的. es的一个概念就是去中心化,字面上理解就是无中心节点,这是对于集群外部来说的,因为从外部来看es集群,在逻辑上是个整体,你与任何一个节点的通信和与整个es集群通信是等价的.

Elasticsearch 学习笔记

- - 研发管理 - ITeye博客
安装  Elasticsearch. 1:解压下载的安装包 elasticsearch-1.7.2.zip. 修改  node.name: es(集群状态名字一致). 2:在https://github.com/elasticsearch/elasticsearch-servicewrapper下载该插件后,解压缩.