hive bucket 桶

标签: hive bucket | 发表时间:2015-01-07 10:42 | 作者:preterhuman_peak
分享到:
出处:http://blog.csdn.net
对于每一个表(table)或者分区,Hive可以进一步组织成桶。Hive也是针对某一列进行桶的组织。Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。采用桶能够带来一些好处,比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量。
hive中table可以拆分成partition,table和partition可以通过‘CLUSTERED BY ’进一步分bucket,bucket中的数据可以通过‘SORT BY’排序。
bucket主要作用:
1. 数据sampling
2. 提升某些查询操作效率,例如mapside join
需要特别注意的是:clustered by和sorted by不会影响数据的导入,这意味着,用户必须自己负责数据如何如何导入,包括数据的分桶和排序。
'set hive.enforce.bucketing = true'  可以自动控制上一轮reduce的数量从而适配bucket的个数,当然,用户也可以自主设置mapred.reduce.tasks去适配bucket 个数,推荐使用'set hive.enforce.bucketing = true' 

示例:
建临时表student_tmp,并导入数据:
hive> desc student_tmp;         
OK
id      int
age     int
name    string
stat_date       string
Time taken: 0.106 seconds
hive> select * from student_tmp;
OK
1       20      zxm     20120801
2       21      ljz     20120801
3       19      cds     20120801
4       18      mac     20120801
5       22      android 20120801
6       23      symbian 20120801
7       25      wp      20120801
Time taken: 0.123 seconds

建student表:
hive>create table student(id INT, age INT, name STRING)
        >partitioned by(stat_date STRING) 
        >clustered by(id) sorted by(age) into 2 bucket
        >row format delimited fields terminated by ',';

设置环境变量:
       >set hive.enforce.bucketing = true; 

插入数据:
       >from student_tmp 
        >insert overwrite table student partition(stat_date="20120802") 
        >select id,age,name where stat_date="20120801" sort by age;

查看文件目录:
$ hadoop fs -ls /user/hive/warehouse/studentstat_date=20120802/
Found 2 items
-rw-r--r--   1 work supergroup         31 2012-07-31 19:52 /user/hive/warehouse/student/stat_date=20120802/000000_0
-rw-r--r--   1 work supergroup         39 2012-07-31 19:52 /user/hive/warehouse/student/stat_date=20120802/000001_0

查看sampling数据:
hive> select * from student tablesample(bucket 1 out of 2 on id);                                                                               
Total MapReduce jobs = 1
Launching Job 1 out of 1
.......
OK
4       18      mac     20120802
2       21      ljz     20120802
6       23      symbian 20120802
Time taken: 20.608 seconds

tablesample是抽样语句,语法:TABLESAMPLE(BUCKET x OUT OF y)
y必须是table总bucket数的倍数或者因子。hive根据y的大小,决定抽样的比例。例如,table总共分了64份,当y=32时,抽取 (64/32=)2个bucket的数据,当y=128时,抽取(64/128=)1/2个bucket的数据。x表示从哪个bucket开始抽取。例 如,table总bucket数为32,tablesample(bucket 3 out of  16),表示总共抽取(32/16=)2个bucket的数据,分别为第3个bucket和第(3+16=)19个bucket的数据
作者:preterhuman_peak 发表于2015-1-7 10:42:15 原文链接
阅读:49 评论:0 查看评论

相关 [hive bucket] 推荐:

hive bucket 桶

- - CSDN博客推荐文章
对于每一个表(table)或者分区,Hive可以进一步组织成桶. Hive也是针对某一列进行桶的组织. Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中. 采用桶能够带来一些好处,比如JOIN操作. 对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作. 那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量.

hive 优化 tips

- - CSDN博客推荐文章
一、     Hive join优化. 也可以显示声明进行map join:特别适用于小表join大表的时候,SELECT /*+ MAPJOIN(b) */ a.key, a.value FROM a join b on a.key = b.key. 2.     注意带表分区的join, 如:.

Hive中的join

- - CSDN博客云计算推荐文章
select a.* from a join b on a.id = b.id select a.* from a join b on (a.id = b.id and a.department = b.department). 在使用join写查询的时候有一个原则:应该将条目少的表或者子查询放在join操作符的左边.

Hive优化

- - 互联网 - ITeye博客
     使用Hive有一段时间了,目前发现需要进行优化的较多出现在出现join、distinct的情况下,而且一般都是reduce过程较慢.      Reduce过程比较慢的现象又可以分为两类:. 情形一:map已经达到100%,而reduce阶段一直是99%,属于数据倾斜. 情形二:使用了count(distinct)或者group by的操作,现象是reduce有进度但是进度缓慢,31%-32%-34%...一个附带的提示是使用reduce个数很可能是1.

hive调优

- - 互联网 - ITeye博客
一、    控制hive任务中的map数: . 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务. 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);.

hive mapjoin使用

- - 淘剑笑的博客
今天遇到一个hive的问题,如下hive sql:. 该语句中B表有30亿行记录,A表只有100行记录,而且B表中数据倾斜特别严重,有一个key上有15亿行记录,在运行过程中特别的慢,而且在reduece的过程中遇有内存不够而报错. 为了解决用户的这个问题,考虑使用mapjoin,mapjoin的原理:.

hive优化(2)

- - 开源软件 - ITeye博客
Hive是将符合SQL语法的字符串解析生成可以在Hadoop上执行的MapReduce的工具. 使用Hive尽量按照分布式计算的一些特点来设计sql,和传统关系型数据库有区别,. 所以需要去掉原有关系型数据库下开发的一些固有思维. 1:尽量尽早地过滤数据,减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段.

hive优化

- - 开源软件 - ITeye博客
hive.optimize.cp=true:列裁剪. hive.optimize.prunner:分区裁剪. hive.limit.optimize.enable=true:优化LIMIT n语句. hive.limit.optimize.limit.file=10:最大文件数.   1.job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默认128MB).

Java HIVE 使用Jdbc连接Hive

- - CSDN博客云计算推荐文章
1,使用Jdbc方式链接hive,首先需要启动hive的Thrift Server,否则会导致错误. hive --service hiveserver   是两”-“,. ----通过Class.forName("org.apache.hadoop.hive.jdbc.HiveDriver");加载hive驱动.