互联网无处不在的“推荐算法”

标签: 互联网 推荐算法 | 发表时间:2011-06-15 23:53 | 作者:新浪科技 Tiger
出处:http://ucdchina.com/rss/all

数据显示,三分之一的用户会根据电子商务网站的推荐买东西,这是任何广告都不可能做到的成绩。媒体上播放的大众化广告对消费者的影响已经越来越低,于是有人做出预见——个性化推荐技术将成为广告的终极形式。

    很多年前,看过一部电影叫作《谁知女人心》,好莱坞大牌梅尔·吉布森饰演的男主角是一个典型的大男子主义者。一次浴室触电的意外突然让这个大男人获得了神奇的本领——“读心术”,可以轻而易举地洞悉身边女人们的心事,听到她们内心的独白。尽管一开始被这个本领吓得半死,可他却渐渐沉迷,以此俘获芳心。

    “读心术”听起来匪夷所思,却也有些人正乐衷于此道。仿佛一夜间,身边突然出现了一位洞悉你所有喜好的“知音”,可以24小时提供全方位的贴心指引,不厌其烦地向你推荐那些“你可能感兴趣的……”东西,从房子,到袜子。

    你猜对了,这就是在不知不觉中侵占整个互联网的“推荐算法”,不单直指你心底里哪些小秘密,更成为了每个网站拉拢用户的核心机密。

    当“推荐”让人欲罢不能

    Netflix使用软件算法来推荐电影,豆瓣电台擅长推荐  “不经意的好音乐”,Goodreads热衷于推荐书籍……个性化的“推荐算法”已全面运用到一长串互联网网站中,从视频推荐、音乐推荐、购物推荐直到好友推荐等。

    不少网友迷恋上了使用“推荐算法”后的快感。“自从我使用Last.fm和豆瓣电台的音乐服务之后,就开始依赖他们所提供的‘音乐推荐’,不再在街头的CD摊驻足,甚至连MP3都很少下载了。”在公关公司工作的张小姐两年前就成了豆瓣电台的忠实拥趸。“没用以前还不明白为啥有那么多人听豆瓣,用了之后就不得不佩服它推荐的音乐非常符合我的口味,收藏的音乐越多,它推荐越精准,就像鞋子一样越穿越合脚。不过,要是收藏太多音乐的话,准确性就会有所下降,可能这时候,连你自己都不知道自己究竟喜欢哪类音乐了,更何况是个软件。”

    事实上,“推荐算法”的“工作原理”算不上太复杂。以同样推荐音乐的Last.fm网站为例,假如你喜欢王菲,而与你同样喜欢王菲的朋友在听林忆莲,Last.fm就会把林忆莲放到你的播放列表上。

    Last.fm网站的负责人对于“推荐算法”推崇备至,“我们围绕音乐建立了一个庞大的社区,是这个社区帮助我们提炼‘推荐’。推荐的音乐是从2000多万人真实的收听习惯中提取出来的。所以,你播放音乐的次数越多,Last.fm上的用户越多,推荐结果就越准确。你能发现音乐与音乐之间往往有意想不到的关联,甚至无意间泄露你最近的心情。听说有人失恋了,心有不甘,就在Last.fm上看前恋人在听什么样的歌,猜测他们此时的心情。”

    以个性化“算法推荐”,也就是“豆瓣猜你会喜欢”,豆瓣网最先实践的三个生活领域是图书、电影、音乐。原因也很简单,这三个领域最容易推荐准确。豆瓣网创始人杨勃曾表示,“对多数人做选择最有效的帮助其实来自亲友和同事。随意的一两句推荐,不但传递了他们自己真实的感受,也包含了对你口味的判断和随之而行的筛选。他们不会向单身汉推荐育儿大全,也不会给老妈带回《赤裸特工》。无论高矮胖瘦,白雪巴人,豆瓣帮助你通过你喜爱的东西找到志同道合者,然后通过他们找到更多的好东西。”

    有意思的是,“推荐算法”还衍生出不少附加的好处。在Last.fm上最好玩的是,观察人们正在听什么音乐。这个数据非常有趣,甚至可以准确预见什么乐队会走红。现在,通过“推荐算法”做出预测已经让不少公司动了心。Google创造出一种新的产品用来尝试通过搜索引擎预测奥斯卡金像奖的得主。据了解,过去几年的奥斯卡最佳影片《拆弹部队》、《贫民窟的百万富翁》、《老无所依》等,都曾于获奖前在搜索引擎中表现出了至少四个星期的上升趋势。不过,显然这种预测还需要加强“准头”,搜索大热的《社交网络》最终还是在现实中败给了《国王的演讲》。

    可以预见的是,随着技术的进步,更具人性化、更准确的“推荐算法”,甚至能通过体感、虹膜、血压等数据的变化,挖掘到用户真实的内心需求。

    当“推荐”遭遇“商业智慧”

    不过,对于“推荐算法”而言,摆在眼前的一个疑问始终挥之不去——这真是一位理想的“知音”吗?

    不知你是否注意到,每次在淘宝的时候,从你搜索你想要买的那样东西开始,到完成交易给对方评价,网站都会在一个小角落滚动推荐一些“你可能感兴趣的东西”。这就是悄悄隐藏的“推荐算法”。比如,你曾经购买了几本村上春树的作品,算法会自动向你推荐这位作家乃至几位日本作家的其他作品等。

    越来越多的人发现,推测人们的口味,实在一桩有利可图的生意。影片租赁网Netflix投入100万美元给开发小组开发一个比旧版更好用的电影推荐系统这一事实就是最佳证明。现在,更是有众多专家把“推荐算法”推上了继社交网络之后web2.0时代“最大黑马”的宝座。

    《连线》杂志主编克里斯·安德森提出“长尾理论”的三个法则,第一是让所有东西都可以被获得;第二是让这些东西卖得很便宜;第三是帮我找到它。而这第三点恰恰是个性化“推荐算法”的专长,帮助用户在大量的商品中做出选择。

    目前,全球电子商务零售类增长最快的三大巨头——亚马逊、Staples和Netflix都已经全面应用了个性化的推荐系统。据市场分析公司Forrester统计数据显示,三分之一的用户会根据电子商务网站的推荐买东西,这是任何广告都不可能做到的成绩。媒体上播放的大众化广告对消费者的影响已经越来越低,于是有人做出预见——个性化推荐技术将成为广告的终极形式。

    国内的豆瓣网也在“推荐算法”的商业应用上蠢蠢欲动,今年从生活类的小站、社区里的二手交易、“豆瓣猜你会喜欢的团购”,直到一些手机应用上都已经率先试水。按照杨勃的说法,“我们希望当别人帮你娱乐游戏八卦的时候,还能帮到你的真实生活。”

    “以前都是人工推荐,但系统开发的自动化智能方式更方便、有效。”百分点CEO柏林森认为,个性化推荐技术将成为等同搜索引擎的互联网基础服务,个性化推荐服务的精准营销平台则将成为电子商务行业的标准配备功能。

    难怪在社交网络产品上屡败屡战的Google,仍然执拗地推出了“+1”。如同Facebook上的“Like”一样,如果在Google搜索结果中看到一条喜欢的链接按下“+1”,你的朋友再次进行类似搜索时,便会看到你的推荐。现在,“+1”按钮只会出现在Google搜索页面上,但是Google正计划让它出现在各大主要网站上。

    当“推荐”左右你我生活

    或许此种电脑的自动推荐还能勉强算得上新奇,可当被海量般诸如“你可能感兴趣的新闻”、“你可能感兴趣的书”、“你可能感兴趣的电影”、“你可能感兴趣的餐馆”、“你可能感兴趣的……”等推荐狂轰乱炸过一番后,已经有不少人感到迷恋于各大网站上泛滥成灾的推荐,俨然更像是打开了一个“潘多拉的盒子”。

    网友MarsC最近就被推荐算法“雷”了一记。原来,他在京东商城上兴致勃勃地订了双缓冲跑鞋,结果网页上立马列出一个“最佳购买组合”,竟然搭上一只无油烟健康炒锅。“我晕,买鞋配个锅!真不知道京东怎么算的。”

    身边也有些朋友开始向记者抱怨,听网站系统推荐的音乐尽管偶尔也能惊喜一番,但总是一个调调的循环播放还真很难不让人产生审美疲劳。“大部分时间中,网站推荐的音乐都非常‘妥帖’,但这就好比我雇了一个只懂得顺从和谄媚的DJ。”

    豆瓣的图书推荐也遇到了类似的尴尬。网友每点开1本书后,“也喜欢……”列表总会牵扯出另外10本五花八门的书,10本又10本循环无穷无尽,最终只能让人直接忽略掉豆瓣的系统推荐,否则光是看看这些就要消耗不少时间。

    当大笔大笔的金钱堆起了“推荐算法”的准确性后,这些装作能洞悉你心思的系统,却无法保证推荐的多样性和新颖性。“推荐算法会局限我们感兴趣的领域,阻止我们发现新的精彩”,有网友在论坛上直言不讳。当推荐没有节制时,它就让人无法从中筛选出“你可能更感兴趣”的东西了。

    实事求是地说,提高效率、增长见识始终不是“推荐算法”的最终目的,开发出它的网站要的是用户停留更多的时间,或者花去更多的金钱,为此甚至可能不惜不断挖掘出更多的个人隐私。

    有个小故事似乎是最好的印证,说是数学天才JeffHammerbacher,2006年从哈佛毕业,一年后加入Facebook,奠定Facebook业务的基石——以“推荐算法”确保精准广告。可仅仅待了两年之后,Hammerbacher开始怀疑人生,于是2008年他从Facebook辞职了。“我的脑袋竟然都在这里思考着怎样让人们去大量地点击广告,真衰。”这位天才辞职后发出了无限感慨。

    是的,这就是赤裸裸的“推荐算法”。

源地址:http://tech.sina.com.cn/t/2011-06-12/18445638460.shtml

相关 [互联网 推荐算法] 推荐:

互联网无处不在的“推荐算法”

- Tiger - 所有文章 - UCD大社区
数据显示,三分之一的用户会根据电子商务网站的推荐买东西,这是任何广告都不可能做到的成绩. 媒体上播放的大众化广告对消费者的影响已经越来越低,于是有人做出预见——个性化推荐技术将成为广告的终极形式.     很多年前,看过一部电影叫作《谁知女人心》,好莱坞大牌梅尔·吉布森饰演的男主角是一个典型的大男子主义者.

互联网无处不在的推荐算法

- - 互联网分析
数据显示,三分之一的用户会根据电子商务网站的推荐买东西,这是任何广告都不可能做到的成绩. 媒体上播放的大众化广告对消费者的影响已经越来越低,于是有人做出预见——个性化推荐技术将成为广告的终极形式. 很多年前,看过一部电影叫作《谁知女人心》,好莱坞大牌梅尔·吉布森饰演的男主角是一个典型的大男子主义者.

社会化推荐算法

- - CSDN博客云计算推荐文章
本文是论文《一种结合推荐对象间关联关系的社会化推荐算法》(以下简称论文)的笔记(下). 该论文提出的算法是以PMF为框架基础的. 因而若对PMF不太了解的话,可以参考我的 上一篇文章脑补一下,当然,那篇文章只是概述,详细了解PMF还需要阅读初始论文,但读完那篇文章后,对本文的理解应该没有问题. 所谓社会化推荐算法,是将社交网络的特性加入到推荐系统中来.

常用推荐算法

- - 互联网 - ITeye博客
       在推荐系统简介中,我们给出了推荐系统的一般框架. 很明显,推荐方法是整个推荐系统中最核心、最关键的部分,很大程度上决定了推荐系统性能的优劣. 目前,主要的推荐方法包括:基于内容推荐、协同过滤推荐、基于关联规则推荐、基于效用推荐、基于知识推荐和组合推荐. 基 于内容的推荐(Content-based Recommendation)是信息过滤技术的延续与发展,它是建立在项目的内容信息上作出推荐的,而不需要依据用户对项目的评价意见,更多地需要用机 器学习的方法从关于内容的特征描述的事例中得到用户的兴趣资料.

Mahout: SVDRecommender SVD推荐算法

- -

[转]Mahout推荐算法基础

- - 小鸥的博客
Mahout推荐算法分为以下几大类. 2.相近的用户定义与数量. 2.用户数较少时计算速度快. 1.基于item的相似度. 1.item较少时就算速度更快. 2.当item的外部概念易于理解和获得是非常有用. 1基于SlopeOne算法(打分差异规则). 当item数目十分少了也很有效. 需要限制diffs的存储数目否则内存增长太快.

推荐算法Slope One初探

- - 标点符
Slope One 算法是由 Daniel Lemire 教授在 2005 年提出的一个 Item-Based 推荐算法.  Slope One 算法试图同时满足这样的的 5 个目标: . 易于实现和维护:普通工程师可以轻松解释所有的聚合数据,并且算法易于实现和测试. 运行时可更新的:新增一个评分项,应该对预测结果即时产生影响.

美团推荐算法实践

- - 美团技术团队
推荐系统并不是新鲜的事物,在很久之前就存在,但是推荐系统真正进入人们的视野,并且作为一个重要的模块存在于各个互联网公司,还是近几年的事情. 随着互联网的深入发展,越来越多的信息在互联网上传播,产生了严重的信息过载. 如果不采用一定的手段,用户很难从如此多的信息流中找到对自己有价值的信息. 解决信息过载有几种手段:一种是搜索,当用户有了明确的信息需求意图后,将意图转换为几个简短的词或者短语的组合(即query),然后将这些词或短语组合提交到相应的搜索引擎,再由搜索引擎在海量的信息库中检索出与query相关的信息返回给用户;另外一种是推荐,很多时候用户的意图并不是很明确,或者很难用清晰的语义表达,有时甚至连用户自己都不清楚自己的需求,这种情况下搜索就显得捉襟见肘了.

Mahout推荐算法API详解

- - zzm
Mahout推荐算法API详解. Hadoop家族系列文章, 主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等.

基于综合兴趣度的协同过滤推荐算法

- - IT技术博客大学习
标签:   兴趣   协同过滤   推荐. 电子商务推荐系统最大的优点在于它能收集用户的兴趣资料和个人信息,根据用户兴趣偏好主动为用户做出个性化推荐. 推荐技术指的是如何找出用户感兴趣的商品并列出推荐清单,在用户信息获取差别不大的情况下,推荐技术成为决定一个推荐系统性能的关键,其中推荐算法是推荐技术的核心[1].