Docker 监控- Prometheus VS Cloud Insight

标签: docker | 发表时间:2015-12-02 02:39 | 作者:OneAPM蓝海讯通
出处:http://segmentfault.com/blogs

如今,越来越多的公司开始使用 Docker 了,2 / 3 的公司在尝试了 Docker 后最终使用了它。为了能够更精确的分配每个容器能使用的资源,我们想要实时获取容器运行时使用资源的情况,怎样对 Docker 上的应用进行监控呢?Docker 的结构会不会加大监控难度?

可是在没有专业运维团队来监控 Docker 的情况下,并且还想加快 Docker 监控的日程,怎么办呢?

我们通过调查了解到几种不错的 Docker 监控方法,其中 Prometheus 和 Cloud Insight 让人很感兴趣。

Prometheis

先来说说一套开源的 Docker 监控方案: Prometheus;而此篇文字的原文地址: Monitor Docker Containers with Prometheus

Prometheus 由 SoundCloud 发明,适合于监控基于容器的基础架构。Prometheus 特点是高维度数据模型,时间序列是通过一个度量值名字和一套键值对识别。灵活的查询语言允许查询和绘制数据。它采用了先进的度量标准类型像汇总(summaries),从指定时间跨度的总数构建比率或者是在任何异常的时候报警并且没有任何依赖,中断期间使它成为一个可靠的系统进行调试。

Prometheus 支持维度数据,你可以拥有全局和简单的指标名像 container_memory_usage_bytes ,使用多个维度来标识你服务的指定实例。

我已经创建了一个简单的 container-exporter 来收集 Docker 容器的指标以及输出给 Prometheus 来消费。这个输出器使用容器的名字,id 和 镜像作为维度。额外的 per-exporter 维度可以在 prometheus.conf 中设置。

如果你使用指标名字直接作为一个查询表达式,它将返回有这个使用这个指标名字作为标签的所有时间序列。

container_memory_usage_bytes{env="prod",id="23f731ee29ae12fef1ef6726e2fce60e5e37342ee9e35cb47e3c7a24422f9e88",instance="http://1.2.3.4:9088/metrics",job="container-exporter",name="haproxy-exporter-int",image="prom/haproxy-exporter:latest"} 11468800.000000

container_memory_usage_bytes{env="prod",id="57690ddfd3bb954d59b2d9dcd7379b308fbe999bce057951aa3d45211c0b5f8c",instance="http://1.2.3.5:9088/metrics",job="container-exporter",name="haproxy-exporter",image="prom/haproxy-exporter:latest"} 16809984.000000

container_memory_usage_bytes{env="prod",id="907ac267ebb3299af08a276e4ea6fd7bf3cb26632889d9394900adc832a302b4",instance="http://1.2.3.2:9088/metrics",job="container-exporter",name="node-exporter",image="prom/container-exporter:latest"}
`
...
...
`
如果你运行了许多容器,这个看起来像这样:

Docker 监控- Prometheus VS Cloud Insight

为了帮助你使得这数据更有意义,你可以过滤(filter) and/or 聚合(aggregate) 这些指标。

使用 Prometheus 的查询语言,你可以对你想的任何维度的数据切片和切块。如果你对一个给定名字的所有容器感兴趣,你可以使用一个表达式像 container_memory_usage_bytes{name="consul-server"},这个将仅仅显示 name == "consul-server" 的时间序列。

像多维度的数据模型,来实现数据聚合、分组、过滤,不单单是 Prometheus。OpenTSDB 和 InfluxDB 这些时间序列数据库和系统监控工具的结合,让系统监控这件事情变得更加的多元。

接下来,我们为大家介绍国内一家同样提供该功能的监控方案: Cloud Insight。有关其数据聚合的功能可以阅读: 数据聚合 & 分组:新一代系统监控的核心功能

现在我们来对比 Prometheus 和 Cloud Insight 在数据聚合、分组(切片)上的展现效果和功能。

数据聚合

根据不同的 Container Name 或 Image Name 对内存使用量或 Memeory Cache 进行聚合。

Docker 监控- Prometheus VS Cloud Insight

数据分组(切片)

根据不同的 Container Name 或 Image Name 对内存使用量或 Memeory Cache进行分组(切片)。

Docker 监控- Prometheus VS Cloud Insight

Cloud Insight

Cloud Insight 支持多种操作系统、云主机、数据库和中间件的监控,原理是在平台服务仪表盘和自定义仪表盘中,采集并处理 Metric,对数据进行聚合与分组等计算,提供曲线图、柱状图等多样化的展现形式。优点是监控的指标很全,简单易用,也可以期待一下。

Cloud Insight 监控 Docker 试验

我们用 AcmeAir 作为试验的应用,AcmeAir 是一款由原 IBM 新技术架构部资深工程师 Andrew Spyker,利用 Netflix 开源的 Netflix OSS 打造的开源电子商务应用。

首先,我们要打开 Cloud Insight 监控,还好 Cloud Insight 安装简单,一条命令即可。接着,我们新建一个用于此次监控的仪表盘,依次将想要获取的指标统统添加进去。

我们添加了以下指标:

  • docker.cpu.user

  • docker.cpu.sysytem

  • docker.containers.running

  • jvm.heap_memory

  • jvm.non_heap_memory

  • jvm.gc.cms.count

  • jvm.heap_memory_max

  • jvm.gc.parnew.time

应用 Acme 部署在四台 servers 上,我们开启四台 servers, 然后用 JMeter 给应用加压。

Docker 监控- Prometheus VS Cloud Insight

随着时间 JMeter 不断给应用加压,当 users 人数达到188时,我们再来看一下仪表盘的视图。

Docker 监控- Prometheus VS Cloud Insight

从图中可以看到,性能数据发生了变化,根据 JMeter 里的数据,此时 CPU 占用超过了50%,错误率也有所提升;对比来看,根据 Cloud Insight 里的曲线显示,蓝色的线所代表的 Container CPU 占用率已经超过50%,逐渐接近75%,系统剩余的 CPU 资源逐渐下降,该 Container 的系统 CPU 资源消耗也突然增大。我们可以通过这些定位到 CPU 占用率过高的 Container ,及时而主动地去了解性能瓶颈,从而优化性能,合理分配资源。 Cloud Insight 所抓取的性能指标算是较为全面,部署和展现方式都是相当简单易懂的。

总结

Docker 兼容相比其他的数据库、系统、中间件监控,要复杂一些。由于需要表征不同 Container 的性能消耗,来了解不同应用的运行情况,所以数据的聚合、切片(分组)和过滤,在 Docker 监控中成为了必备功能。

所以我们推荐使用了时间序列数据库,或者类似设计逻辑的监控方案,如:Prometheus 和 Cloud Insight。

而 Docker 单方面的监控,可能不太满足一些大型公司的需求,如果一个工具在监控 Docker 同时能够监控其他组件,那就更好了。

国外出现了 Graphite、Grafana 和 Host Graphite,能够让用户将不同数据来源都集中在同一个地方进行展现;而国内 Cloud Insight 似乎也是这样的思路。

相关 [docker 监控 prometheus] 推荐:

Docker 监控- Prometheus VS Cloud Insight

- - SegmentFault 最新的文章
如今,越来越多的公司开始使用 Docker 了,2 / 3 的公司在尝试了 Docker 后最终使用了它. 为了能够更精确的分配每个容器能使用的资源,我们想要实时获取容器运行时使用资源的情况,怎样对 Docker 上的应用进行监控呢. Docker 的结构会不会加大监控难度. 可是在没有专业运维团队来监控 Docker 的情况下,并且还想加快 Docker 监控的日程,怎么办呢.

Prometheus 和 Grafana 监控系统指南

- - 互联网技术和架构
Prometheus 是源于 Google Borgmon 的一个开源监控系统,用 Golang 开发. Prometheus 基本原理是通过 HTTP 协议周期性抓取被监控组件的状态,这样做的好处是任意组件只要提供 HTTP 接口就可以接入监控系统,不需要任何 SDK 或者其他的集成过程. 这样做非常适合虚拟化环境比如 VM 或者 Docker.

Docker 监控实战

- - SegmentFault 最新的文章
如今,越来越多的公司开始使用 Docker 了,现在来给大家看几组数据:. 2 / 3 的公司在尝试了 Docker 后最终使用了它. 也就是说 Docker 的转化率达到了 67%,而转化市场也控制在 60 天内. 越大型的公司越早开始使用 Docker. 研究发现主机数量越多的公司,越早开始使用 Docker.

关于docker容器的监控

- - CSDN博客推荐文章
1 docker inspect [容器ID | 镜像ID]. 查看容器创建时间、容器的IP、映射的端口、挂载的目录等信息. 此命令同样也能用来查看镜像的详细信息. 2 docker stats 容器ID. 用来查看容器的资源使用情况,如:CPU、内存、网络、I/O. 另外,在docker的配置文件中添加如下的参数之后,可以采用curl来调用stats API接口.

【实战】五个Docker监控工具的对比

- - ITeye资讯频道
【编者的话】这篇文章作者是Usman,他是服务器和基础架构工程师,有非常丰富的分布式构建经验. 该篇文章主要分析评估了五种Docker监控工具,包括免费的和不免费的:Docker Stats、CAdvisor、Scout、Data Dog以及Sensu. 不过作者还是推荐使用Data Dog. 另外还有两个工具:Prometheus与Sysdig Cloud会在下一篇做介绍分析,敬请期待.

Docker容器的自动化监控实现

- - DockerInfo
2016年对于网易杭州研究院(以下简称“杭研”)而言是重要的,成立十周年之际,杭研正式推出了网易云. “十年•杭研技术秀”系列文章,由杭研研发团队倾情奉献,为您展示杭研那些有用、有趣的技术实践经验,涵盖云计算、大前端、信息安全、运维、QA、大数据、人工智能等领域,涉及前沿的分布式、 容器、深度学习等技术.

在Docker中监控Java应用程序的5个方法

- -
作者:Chris Ward . 译者注:Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化. 通常情况下,监控的主要目的在于:减少宕机时间、扩展和性能管理、资源计划、识别异常事件和故障排除分析等. 本文作者介绍了5种方法帮助你在Docker中监控Java应用程序.

docker初体验之docker-tomcat

- - BlogJava-首页技术区
docker已经是现在最热的容器技术,最近也去体验了一下,在daocloud注册了一个账号,并开始本机实战docker. daocloud免费有两个容器可用,体验送T恤,邀请送书,这里我分享一个daocloud的邀请码 https://account.daocloud.io/signup?invite_code=mxeq2jkmcur37vz6ven8,daocloud是非常棒的容器云平台,使用体验好,问题响应也及时,绑定微信还送一个额外容器.

Docker应用场景

- - 灯火阑珊
Flynn:一个使用go语言编写的开源PaaS平台,目标是简化分布式环境中应用的部署和维护,可以通过git push命令,将应用部署到Docker,从而省去复杂的配置和操作. CoreOS:一种新的架构体系重新设计的Linux发型版,可以运行在既有的硬件活着云服务器上. CoreOS不提供类似yum或apt的包管理工具,用户不需要在CoreOS中安装软件,而是让程序都在Docker容器中运行.

docker使用场景

- - 开源软件 - ITeye博客
Docker应用容器相对于 VM 有以下几个优点:. 1、启动速度快,容器通常在一秒内可以启动,而 VM 通常要更久. 2、资源利用率高,一台普通PC 可以跑上千个容器,你跑上千个 VM 试试. 3、性能开销小, VM 通常需要额外的 CPU 和内存来完成 OS 的功能,这一部分占据了额外的资源. 因为VM 的 Hypervisor 需要实现对硬件的虚拟化,并且还要搭载自己的操作系统,自然在启动速度和资源利用率以及性能上有比较大的开销.