最全Python爬虫总结

标签: python 爬虫 | 发表时间:2016-05-14 04:19 | 作者:JavaChaoCo
出处:http://blog.csdn.net
最近总是要爬取一些东西,索性就把Python爬虫的相关内容都总结起来了,自己多动手还是好。
(1)普通的内容爬取
(2)保存爬取的图片/视频和文件和网页
(3)普通模拟登录
(4)处理验证码登录
(5)爬取js网站
(6)全网爬虫
(7)某个网站的站内所有目录爬虫
(8)多线程 
(9)爬虫框架Scrapy   


一,普通的内容爬取
#coding=utf-8
import urllib  
import urllib2  
url = 'http://www.dataanswer.top'  
headers = { 
	'Host':'www.dataanswer.top',
	'User-Agent':'Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:31.0) Gecko/20100101 Firefox/31.0',
	#'Accept':'application/json, text/javascript, */*; q=0.01',
	#'Accept-Language':'zh-cn,zh;q=0.8,en-us;q=0.5,en;q=0.3',
	#'Accept-Encoding':'gzip,deflate',
	#'Referer':'http://www.dataanswer.top'
}   
request = urllib2.Request(url,headers=headers)  
response = urllib2.urlopen(request)  
page = response.read()
print page
二,保存爬取的图片/视频和文件和网页
#图片/视频和文件和网页的地址抓取下来后,利用模块urllib里的urlretrieve()方法下载下来:
#coding=utf-8
import urllib  
import urllib2  
import os
def getPage(url):     
	request = urllib2.Request(url)  
        response = urllib2.urlopen(request)  
        return response.read()  


url='http://www.dataanswer.top/'  
result=getPage(url)  
file_name='test.doc'
file_path='doc'
if os.path.exists(file_path) == False:
    os.makedirs(file_path)
local=os.path.join(file_path,file_name)
f = open(local,"w+")  
f.write(result) 
f.close()


#coding=utf-8
import urllib  
import urllib2  
import os
def getPage(url):     
	request = urllib2.Request(url)  
        response = urllib2.urlopen(request)  
        return response.read()  


url='http://www.dataanswer.top/'  #把该地址改成图片/文件/视频/网页的地址即可
result=getPage(url)  
file_name='test.doc'
file_path='doc'
if os.path.exists(file_path) == False:
    os.makedirs(file_path)
local=os.path.join(file_path,file_name)
urllib.urlretrieve(local)
三,普通模拟登录
import urllib
import urllib2
import cookielib
 
filename = 'cookie.txt'
#声明一个MozillaCookieJar对象实例来保存cookie,之后写入文件
cookie = cookielib.MozillaCookieJar(filename)
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookie))
postdata = urllib.urlencode({
'name':'春天里',
'pwd':'1222222'
})
#登录的URL
loginUrl = 'http://www.dataanswer.top/LoginService?action=tologin'
#模拟登录,并把cookie保存到变量
result = opener.open(loginUrl,postdata)
#保存cookie到cookie.txt中
cookie.save(ignore_discard=True, ignore_expires=True)
#利用cookie请求访问另一个网址
gradeUrl = 'http://www.dataanswer.top/LoginService?action=myHome'
#请求访问
result = opener.open(gradeUrl)
print result.read()
四,处理验证码登录
#先把验证码图片下载下来保存,再人工读入
#coding=utf-8
import sys, time, os, re
import urllib, urllib2, cookielib
loginurl = 'https://www.douban.com/accounts/login'
cookie = cookielib.CookieJar()
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookie))
params = {
"form_email":"13161055481",
"form_password":"wwwwwww",
"source":"index_nav" #没有的话登录不成功
}
#从首页提交登录
response=opener.open(loginurl)
#验证成功跳转至登录页
print(response.geturl())
if response.geturl() == "https://www.douban.com/accounts/login":
  	html=response.read()
	print(html)
  	#验证码图片地址--图片地址加密怎么办???
  	imgurl=re.search('<img id="captcha_image" src="(.+?)" alt="captcha" class="captcha_image"/>', html)
	print(imgurl)
  	if imgurl:
    		url=imgurl.group(1)
    		#将图片保存至同目录下
    		res=urllib.urlretrieve(url,'v.jpg')
    		#获取captcha-id参数
    		captcha=re.search('<input type="hidden" name="captcha-id" value="(.+?)"/>',html)
    		if captcha:
      			vcode=raw_input('请输入图片上的验证码:')
      			params["captcha-solution"]=vcode
      			params["captcha-id"]=captcha.group(1)
      			params["user_login"]="登录"
      			#提交验证码验证
      			response=opener.open(loginurl, urllib.urlencode(params))
      			''' 登录成功跳转至首页 '''
      			if response.geturl() == "https://www.douban.com/":
        			print 'login success ! '
        			print '准备进行发帖'
        			addtopicurl="http://www.douban.com/group/python/new_topic"
        			res=opener.open(addtopicurl)
        			html=res.read()
			else:
				print("Fail3")
		else:
			print("Fail2")
	else:
		print("Fail1")
else:
	print("Fail0")
五,爬取js网站
#利用selenium模拟浏览器,结合html的解析
#coding=utf-8
#1、安装 python-pip
#sudo apt-get install python-pip
#2、安装selenium
#sudo pip install -U selenium


from selenium import webdriver
driver = webdriver.Firefox() 
driver.get('http://www.newsmth.net/nForum/#!article/Intern/206790')
html=driver.page_source.encode('utf-8','ignore') #这个函数获取页面的html
print(html)
driver.close()

六,全网爬虫
#广度优先,模拟爬取队列
#coding=utf-8
"""
全网爬取所有链接,包括外链--广度优先
"""
import urllib2
import re
from bs4 import BeautifulSoup
import time


#爬虫开始的时间
t=time.time()
#设置的暂停爬取条数
N_STOP=10


#存放已经爬取过的url
CHECKED_URL=[]
#存放待爬取的url
CHECKING_URL=[]
#存放连接失败的url
FAIL_URL=[]
#存放不能连接的url
ERROR_URL=[]
#失败后允许连接的次数
RETRY=3
#连接超时时间
TIMEOUT=20


class url_node:
	def __init__(self,url):
		"""
		url节点初始化
		:param url:String 当前url
		"""
		self.url=url
		self.content=''


	def __is_connectable(self):
		"""
		检验url是否可以连接
		"""
		#在允许连接次数下连接
		for i in range(RETRY):
			try:
				#打开url没有报错,则表示可连接
				response=urllib2.urlopen(self.url,timeout=TIMEOUT)
				return True
			except:
				#如果在尝试允许连接次数下报错,则不可连接
				if i==RETRY-1:
					return False


	def get_next(self):
		"""
		获取爬取该页中包含的其他所有的url
		"""
		soup=BeautifulSoup(self.content)
		#******************在此处可以从网页中解析你想要的内容************************************
		next_urls=soup.findAll('a')
		if len(next_urls)!=0:
			for link in next_urls:
				tmp_url=link.get('href')
				#如果url不在爬取过的列表中也不在待爬取列表中则把其放到待爬列表中(没有确保该url有效)
				if tmp_url not in CHECKED_URL and tmp_url not in CHECKING_URL:
					CHECKING_URL.append(tmp_url)
		
	def run(self):
		if self.url:
			if self.__is_connectable():
				try:
					#获取爬取页面的所有内容
					self.content=urllib2.urlopen(self.url,timeout=TIMEOUT).read()
					#从该页面中获取url
					self.get_next()


				except:
					#把连接失败的存放起来
					FAIL_URL.append(self.url)
					print('[!]Connect Failed')
			else:
				#把不能连接的存放起来
				ERROR_URL.append(self.url)
		else:
			print("所给的初始url有问题!")			


if __name__=='__main__':
	#把初始的url放到待爬的列表中
	CHECKING_URL.append('http://www.36dsj.com/')
	#不断的从待爬的列表中获取url进行爬取
	ff=open("Mytest.txt",'w')
	i=0
	for url in CHECKING_URL:
		#对该url进行爬取
		url_node(url).run()
		#存放已经爬取过的url
		CHECKED_URL.append(url)	
		#删除CHECKING_URL中已经爬取过的url
		CHECKING_URL.remove(url)


		i+=1
		if i==N_STOP:
			#打出停止时的url,下次可以把该url作为初始继续
			print url
			print("爬取过的列表长度:%d") % len(CHECKED_URL)
			print("待爬取的列表长度:%d") % len(CHECKING_URL)
			print("连接失败的列表长度:%d") % len(FAIL_URL)
			print("不能连接的列表长度:%d") % len(ERROR_URL)
			break
	ff.close()
	print("time:%d s") % (time.time()-t)	

七,某个网站的站内所有目录爬虫
#把缩写的站内网址还原
#coding=utf-8
"""
爬取同一个网站所有的url,不包括外链
"""
import urllib2
import re
from bs4 import BeautifulSoup
import time

t=time.time()

HOST=''
CHECKED_URL=[]
CHECKING_URL=[]
RESULT=[]
RETRY=3
TIMEOUT=20

class url_node:
	def __init__(self,url):
		"""
		url节点初始化
		:param url:String 当前url
		"""
		self.url=self.handle_url(url,is_next_url=False)
		self.next_url=[]
		self.content=''


	def handle_url(self,url,is_next_url=True):
		"""
		将所有的url处理成标准形式
		"""
		global CHECKED_URL
		global CHECKING_URL

		#去掉尾部的‘/’
		url=url[0:len(url)-1] if url.endswith('/') else url

		if url.find(HOST)==-1:
			if not url.startswith('http'):
				url='http://'+HOST+url if url.startswith('/') else 'http://'+HOST+'/'+url
			else:
				#如果含有http说明是外链,url的host不是当前的host,返回空
				return
		else:
			if not url.startswith('http'):
				url='http://'+url


		if is_next_url:
			#下一层url放入待检测列表
			if url not in CHECKING_URL:
				CHECKING_URL.append(url)
		else:
			#对于当前需要检测的url将参数都替换为1,然后加入规则表
			#参数相同类型不同的url只检测一次
			rule=re.compile(r'=.*?\&|=.*?$')
			result=re.sub(rule,'=1&',url)
			if result in CHECKED_URL:
				return '[!] Url has checked!'
			else:
				CHECKED_URL.append(result)
				RESULT.append(url)
		return url


	def __is_connectable(self):
		print("进入__is_connectable()函数")
		#检验是否可以连接
		retry=3
		timeout=2
		for i in range(RETRY):
			try:
				#print("进入_..............函数")
				response=urllib2.urlopen(self.url,timeout=TIMEOUT)
				return True
			
			except:
				if i==retry-1:
					return False


	def get_next(self):
		#获取当前所有的url
		#print("进入get_next()函数")
		soup=BeautifulSoup(self.content)
		next_urls=soup.findAll('a')
		if len(next_urls)!=0:
			for link in next_urls:
				self.handle_url(link.get('href'))
				#print(link.text)


		
	def run(self):
		#print("进入run()函数")
		if self.url:
			#print self.url
			if self.__is_connectable():
				try:
					self.content=urllib2.urlopen(self.url,timeout=TIMEOUT).read()
					self.get_next()


				except:
					print('[!]Connect Failed')
#处理https开头的url的类和方法
class Poc:
	def run(self,url):
		global HOST
		global CHECKING_URL
		url=check_url(url)


		if not url.find('https'):
			HOST=url[:8]
		else:
			HOST=url[7:]


		for url in CHECKING_URL:
			print(url)
			url_node(url).run()


def check_url(url):
	url='http://'+url if not url.startswith('http') else url
	url=url[0:len(url)-1] if url.endswith('/') else url


	for i in range(RETRY):
		try:
			response=urllib2.urlopen(url,timeout=TIMEOUT)
			return url
		except:
			raise Exception("Connect error")


if __name__=='__main__':
	HOST='www.dataanswer.com'
	CHECKING_URL.append('http://www.dataanswer.com/')
	f=open('36大数据','w')
	for url in CHECKING_URL:
		f.write(url+'\n')
		print(url)
		url_node(url).run()
	print RESULT
	print "URL num:"+str(len(RESULT))
	print("time:%d s") % (time.time()-t)	
八,多线程
#对列和线程的结合
#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
一个简单的Python爬虫, 使用了多线程, 
爬取豆瓣Top前250的所有电影
"""

import urllib2, re, string
import threading, Queue, time
import sys

reload(sys)
sys.setdefaultencoding('utf8')
_DATA = []
FILE_LOCK = threading.Lock()
SHARE_Q = Queue.Queue()  #构造一个不限制大小的的队列
_WORKER_THREAD_NUM = 3  #设置线程的个数


class MyThread(threading.Thread) :


    def __init__(self, func) :
        super(MyThread, self).__init__()  #调用父类的构造函数
        self.func = func  #传入线程函数逻辑


    def run(self) :
        self.func()


def worker() :
    global SHARE_Q
    while not SHARE_Q.empty():
        url = SHARE_Q.get() #获得任务
        my_page = get_page(url)
        find_title(my_page)  #获得当前页面的电影名
        #write_into_file(temp_data)
        time.sleep(1)
        SHARE_Q.task_done()


def get_page(url) :
    """
    根据所给的url爬取网页HTML
    Args: 
        url: 表示当前要爬取页面的url
    Returns:
        返回抓取到整个页面的HTML(unicode编码)
    Raises:
        URLError:url引发的异常
    """
    try :
        my_page = urllib2.urlopen(url).read().decode("utf-8")
    except urllib2.URLError, e :
        if hasattr(e, "code"):
            print "The server couldn't fulfill the request."
            print "Error code: %s" % e.code
        elif hasattr(e, "reason"):
            print "We failed to reach a server. Please check your url and read the Reason"
            print "Reason: %s" % e.reason
    return my_page


def find_title(my_page) :
    """
    通过返回的整个网页HTML, 正则匹配前100的电影名称
    Args:
        my_page: 传入页面的HTML文本用于正则匹配
    """
    temp_data = []
    movie_items = re.findall(r'<span.*?class="title">(.*?)</span>', my_page, re.S)
    for index, item in enumerate(movie_items) :
        if item.find(" ") == -1 :
            #print item,
            temp_data.append(item)
    _DATA.append(temp_data)

def main() :
    global SHARE_Q
    threads = []
    douban_url = "http://movie.douban.com/top250?start={page}&filter=&type="
    #向队列中放入任务, 真正使用时, 应该设置为可持续的放入任务
    for index in xrange(10) :   
        SHARE_Q.put(douban_url.format(page = index * 25))
    for i in xrange(_WORKER_THREAD_NUM) :
        thread = MyThread(worker)
        thread.start()  #线程开始处理任务
	print("第%s个线程开始工作") % i
        threads.append(thread)
    for thread in threads :
        thread.join()
    SHARE_Q.join()
    with open("movie.txt", "w+") as my_file :
        for page in _DATA :
            for movie_name in page:
                my_file.write(movie_name + "\n")
    print "Spider Successful!!!"


if __name__ == '__main__':
    main()
九,爬虫框架Scrapy

items.py:用来定义需要保存的变量,其中的变量用Field来定义,有点像python的字典
pipelines.py:用来将提取出来的Item进行处理,处理过程按自己需要进行定义
spiders:定义自己的爬虫


爬虫的类型也有好几种:
  1)spider:最基本的爬虫,其他的爬虫一般是继承了该最基本的爬虫类,提供访问url,返回response的功能,会默认调用parse方法
  2)CrawlSpider:继承spider的爬虫,实际使用比较多,设定rule规则进行网页的跟进与处理, 注意点:编写爬虫的规则的时候避免使用parse名,因为这会覆盖继承的spider的的方法parse造成错误。   其中比较重要的是对Rule的规则的编写,要对具体的网页的情况进行分析。
  3)XMLFeedSpider 与 CSVFeedSpider 

(1)打开命令行,执行:scrapy startproject tutorial(项目名称)
(2)scrapy.cfg是项目的配置文件,用户自己写的spider要放在spiders目录下面
(3)解析:name属性很重要,不同spider不能使用相同的name
start_urls是spider抓取网页的起始点,可以包括多个url
parse方法是spider抓到一个网页以后默认调用的callback,避免使用这个名字来定义自己的方法。
当spider拿到url的内容以后,会调用parse方法,并且传递一个response参数给它,response包含了抓到的网页的内容,在parse方法里,你可以从抓到的网页里面解析数据。
(3)开始抓取,进入生成的项目根目录tutorial/,执行 scrapy crawl dmoz, dmoz是spider的name。
(4)保存对象:在items.py中添加一些类,这些类用来描述我们要保存的数据

from scrapy.item import Item, Field
class DmozItem(Item):
    title = Field()
    link = Field()
    desc = Field()
(5)执行scrapy crawl dmoz --set FEED_URI=items.json --set FEED_FORMAT=json后得到保存的文件
(6)让scrapy自动抓取网页上的所有链接

在parse方法里面提取我们需要的链接,然后构造一些Request对象,并且把他们返回,scrapy会自动的去抓取这些链接

作者:JavaChaoCo 发表于2016/5/13 20:19:48 原文链接
阅读:432 评论:0 查看评论

相关 [python 爬虫] 推荐:

最全Python爬虫总结

- - CSDN博客综合推荐文章
最近总是要爬取一些东西,索性就把Python爬虫的相关内容都总结起来了,自己多动手还是好. (2)保存爬取的图片/视频和文件和网页. (7)某个网站的站内所有目录爬虫. (9)爬虫框架Scrapy   . 二,保存爬取的图片/视频和文件和网页. #图片/视频和文件和网页的地址抓取下来后,利用模块urllib里的urlretrieve()方法下载下来:.

Python写爬虫与网页解析

- - 互联网实践
Python写个简单爬虫,并作网页解析,还是非常高效的. urllib2是urllib得增强版,httplib更为底层,可以理解为urllib是对httplib的抽象. httplib是一个相对底层的http请求模块,其上有专门的包装模块,如urllib内建模块,goto等第三方模块,但是封装的越高就越不灵活,比如urllib模块里请求错误时就不会返回结果页的内容,只有头信息,对于某些需要检测错误请求返回值的场景就不适用,所以就得用这个模块了.

python爬虫实践之网页抓取

- - CSDN博客推荐文章
python自带了urllib和urllib2模块,以及第三方的requests库来抓取网页,这里我们使用easy_install包管理工具下载requests库,BeautifulSoup库,在CMD命令行下,切换到easy_install的目录,运行命令easy_install 包名称. 安装好requests包之后,我们就可以选择使用urllib,urllib2或requests库来抓取网页了.

开源Python网络爬虫框架Scrapy

- - 互联网实践
所谓网络爬虫,就是一个在网上到处或定向抓取数据的程序,当然,这种说法不够专业,更专业的描述就是,抓取特定网站网页的HTML数据. 不过由于一个网站的网页很多,而我们又不可能事先知道所有网页的URL地址,所以,如何保证我们抓取到了网站的所有HTML页面就是一个有待考究的问题了. 一般的方法是,定义一个入口页面,然后一般一个页面会有其他页面的URL,于是从当前页面获取到这些URL加入到爬虫的抓取队列中,然后进入到新新页面后再递归的进行上述的操作,其实说来就跟深度遍历或广度遍历一样.

[原][python]书籍信息爬虫示例

- - moxiaomomo的专栏
[python]书籍信息爬虫示例. 需要收集一些书籍信息,以豆瓣书籍条目作为源,得到一些有效书籍信息,并保存到本地数据库. 具体可参考这个链接:. 然后将这些分类标签链接存到本地某个文件,存储内容如下. 获取书籍信息,并保存本地数据库. 假设已经建好mysql表,如下:. 并已实现相关爬虫逻辑,主要用到了BeautifulSoup包,如下:.

基于 Python 的 Scrapy 爬虫入门:代码详解

- - SegmentFault 最新的文章
接下来创建一个爬虫项目,以 图虫网 为例抓取里面的图片. 在顶部菜单“发现” “标签”里面是对各种图片的分类,点击一个标签,比如“美女”,网页的链接为: https://tuchong.com/tags/美女/,我们以此作为爬虫入口,分析一下该页面:. 打开页面后出现一个个的图集,点击图集可全屏浏览图片,向下滚动页面会出现更多的图集,没有页码翻页的设置.

[python爬虫] Selenium常见元素定位方法和操作的学习介绍

- - CSDN博客编程语言推荐文章
        这篇文章主要Selenium+Python自动测试或爬虫中的常见定位方法、鼠标操作、键盘操作介绍,希望该篇基础性文章对你有所帮助,如果有错误或不足之处,请海涵~.         前文目录:.          [Python爬虫] 在Windows下安装PhantomJS和CasperJS及入门介绍(上).

[Python爬虫] Selenium爬取新浪微博客户端用户信息、热点话题及评论 (上)

- - CSDN博客推荐文章
前一篇文章" [python爬虫] Selenium爬取新浪微博内容及用户信息"简单讲述了如何爬取新浪微博手机端用户信息和微博信息. 用户信息:包括用户ID、用户名、微博数、粉丝数、关注数等. 微博信息:包括转发或原创、点赞数、转发数、评论数、发布时间、微博内容等. 它主要通过从文本txt中读取用户id,通过"URL+用户ID" 访问个人网站,如柳岩:.

dropbox讲python

- chuang - Initiative
dropbox定制优化CPython虚拟机,自己搞了个malloc调度算法. 那个 !!!111cos(0). 期待这次PyCon China 2011.

Python调试

- - 企业架构 - ITeye博客
原文地址: http://blog.csdn.net/xuyuefei1988/article/details/19399137. 1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:. IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:.