数据归一化,标准化的几种方法

标签: 数据 归一化 标准化 | 发表时间:2016-05-06 01:57 | 作者:
出处:http://m635674608.iteye.com

归一化方法(Normalization Method)
1。 把数变为(0,1)之间的小数
主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。
2 。把有量纲表达式变为无量纲表达式
归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。
比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。
另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。
标准化方法(Normalization Method)
数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。由于信用指标体系的各个指标度量单位是不同的,为了能够将指标参与评价计算,需要对指标进行规范化处理,通过函数变换将其数值映射到某个数值区间。一般常用的有以下几种方法。
(1) 最小-最大规范化对原始数据进行线性变换。假定MaxA与MinA分别表示属性A的最大与最小值。最小最大规范化通过计算将属性A的值映射到区间[a, b]上的v。一般来说,将最小-最大规范化在用于信用指标数据上,常用的有以下两种函数形式:
a) 效益型指标(越大越好型)的隶属函数:
b) 成本型指标(越小越好型)的隶属函数:
(2) z-score规范化也称零-均值规范化。属性A的值是基于A的平均值与标准差规范化。
(3) 小数定标规范化是通过移动属性A的小数点位置来实现的。小数点的移动位数依赖于A的最大绝对值。

///////////////////////////////////////////////////////////////////////////////////////////////////
关于神经网络归一化方法的整理
由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:(by james)
1、线性函数转换,表达式如下:
y=(x-MinValue)/(MaxValue-MinValue)
说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。
2、对数函数转换,表达式如下:
y=log10(x)
说明:以10为底的对数函数转换。
3、反余切函数转换,表达式如下:
y=atan(x)*2/PI
归一化是为了加快训练网络的收敛性,可以不进行归一化处理
归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1–+1之间是统计的坐标分布。归一化有同一、 统一和合一的意思。无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,归一 化是同一在0-1之间的统计概率分布;
当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从而导致学习速度很慢。为了避免出现这种情况,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其均值接近于0或与其均方差相比很小。
归一化是因为sigmoid函数的取值是0到1之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出归一化处理。所以这样做分类的问题时用[0.9 0.1 0.1]就要比用[1 0 0]要好。
但是归一化处理并不总是合适的,根据输出值的分布情况,标准化等其它统计变换方法有时可能更好。
关于用premnmx语句进行归一化:
premnmx语句的语法格式是:[Pn,minp,maxp,Tn,mint,maxt]=premnmx(P,T)
其中P,T分别为原始输入和输出数据,minp和maxp分别为P中的最小值和最大值。mint和maxt分别为T的最小值和最大值。
premnmx函数用于将网络的输入数据或输出数据进行归一化,归一化后的数据将分布在[-1,1]区间内。
我们在训练网络时如果所用的是经过归一化的样本数据,那么以后使用网络时所用的新数据也应该和样本数据接受相同的预处理,这就要用到tramnmx。
下面介绍tramnmx函数:
[Pn]=tramnmx(P,minp,maxp)
其中P和Pn分别为变换前、后的输入数据,maxp和minp分别为premnmx函数找到的最大值和最小值。
(by terry2008)
matlab中的归一化处理有三种方法
1. premnmx、postmnmx、tramnmx
2. restd、poststd、trastd
3. 自己编程
具体用那种方法就和你的具体问题有关了
(by happy)
pm=max(abs(p(i,:))); p(i,:)=p(i,:)/pm;

for i=1:27
p(i,:)=(p(i,:)-min(p(i,:)))/(max(p(i,:))-min(p(i,:)));
end 可以归一到0 1 之间
0.1+(x-min)/(max-min)*(0.9-0.1)其中max和min分别表示样本最大值和最小值。
这个可以归一到0.1-0.9
=============
数据类型相互转换
这种转换可能发生在算术表达式、赋值表达式和输出时。转换的方式有两种:自动转换和强制转换。
========
自动转换
自动转换由编译系统自动完成,可以将一种数据类型的数据转换为另外一种数据类型的数据。
1)算术运算中的数据转换
如果一个运算符有两个不同类型的运算分量,C语言在计算该表达式时会自动转换为同一种数据类型以便进行运算。先将较低类型的数据提升为较高的类型,从而使 两者的数据类型一致(但数值不变),然后再进行计算,其结果是较高类型的数据。 自动转换遵循原则——“类型提升”:转换按数据类型提升(由低向高)的方向进行,以保证不降低精度。 数据类型的高低是根据其类型所占空间的大小来判定,占用空间越大,类型越高。反之越低。 例如:算术运算x+y,如果x和y的类型都是int型变量,则x+y的结果自然是int型。如果x是short型而y是int型,则需要首先将x转换为 int型,然后再与y进行加法计算,表达式的结果为int型。
2)赋值运算的类型转换
在执行赋值运算时,如果赋值运算符两侧的数据类型不同,赋值号右侧表达式类型的数据将转换为赋值号左侧变量的类型。转换原则是:当赋值运算符“=”右侧表达式的值被计算出来后,不论是什么类型都一律转换为“=”左侧的变量的类型,然后再赋值给左侧的变量。
例如:float a;
a=10;? /*结果为a=10.0(数据填充)*/
int a;
a=15.5 /* 结果为a=15(数据截取)*/
在赋值类型转换时要注意数值的范围不能溢出。既要在该数据类型允许的范围内。如如果右侧变量数据类型长度比左侧的长时,将丢失一部分数据,从而造成数据精度的降低。
3)数据输出时的类型转换
在输出时,数据将转换为格式控制符所要求的类型。同样可能发生数据丢失或溢出。类型转换的实际情况是:字符型到整型是取字符的ASCII码值;整型到字符 型只是取其低8位;实型到整型要去掉小数部分;整型到实型数值不变,但以实数形式存放;双精度到实型是四舍五入的。
========
强制转换
一般情况下,数据类型的转换通常是由编译系统自动进行的,不需要程序员人工编写程序干预,所以又被称为隐式类型转换。但如果程序要求一定将某一类型的数据 从该种类型强制地转换为另外一种类型,则需要人工编程进行强制类型转换,也称为显式转换。强制类型转换的目地是使数据类型发生改变,从而使不同类型的数据 之间的运算能够进行下去。
语法格式如下:
(类型说明符)表达式
功能是强行地将表达式的类型转换为括号内要求的类型。
例如:(int)4.2的结果是4;
又如:int x;
(float)x;x的值被强制转换为实型,但是并不改变的x类型是整型。只是在参与运算处理时按照实型处理。

======

线性函数转转讲一系列数据映射到相应区间,例如将所有数据映射到 1~100

可用下列函数

y=((x-min)/(max-min))*(100-1)+1

1-100 范围内

min是数据集中最小值,max是最大值

 

http://www.codeweblog.com/%E6%95%B0%E6%8D%AE%E5%BD%92%E4%B8%80%E5%8C%96-%E6%A0%87%E5%87%86%E5%8C%96%E7%9A%84%E5%87%A0%E7%A7%8D%E6%96%B9%E6%B3%95/



已有 0 人发表留言,猛击->> 这里<<-参与讨论


ITeye推荐



相关 [数据 归一化 标准化] 推荐:

数据归一化,标准化的几种方法

- - zzm
归一化方法(Normalization Method). 把数变为(0,1)之间的小数. 主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内. 把有量纲表达式变为无量纲表达式. 归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量.

数据归一化和两种常用的归一化方法

- - zzm
数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和 量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性. 原始数据经过数据标准 化处理后,各指标处于同一数量级,适合进行综合对比评价. 一、min-max标准化(Min-Max Normalization).

使用Python对数据进行归一化规格化

- - 标点符
数据归一化问题是数据挖掘中特征向量表达时的重要问题,当不同的特征成列在一起的时候,由于特征本身表达方式的原因而导致在绝对数值上的小数据被大数据“吃掉”的情况,这个时候我们需要做的就是对抽取出来的features vector进行归一化处理,以保证每个特征被分类器平等对待. 先前的文章中已经介绍了几种常见的 数据归一化的方法,这里对主要整理了如何将这些公式和方法转化程Python代码.

为什么一些机器学习模型需要对数据进行归一化? - zhanlijun

- - 博客园_首页
为什么一些机器学习模型需要对数据进行归一化.     针对这个问题参考了wiki的解释: http://en.wikipedia.org/wiki/Feature_scaling. “归一化后有两个好处:1)归一化后加快了梯度下降求最优解的速度;2)归一化有可能提高精度”. 1 归一化为什么能提高梯度下降法求解最优解的速度.

工信部周平:区块链及其标准化发展趋势

- - 雷锋网
从各种联盟、协会到各大校企合作实验室,区块链行业的玩家都希望率先成为制定标准的一方,或者从中抢占某些先机,尤其是由工信部牵头编写的《中国区块链技术和应用发展白皮书》颁布以后. 那么,区块链标准的制定目前处于什么状态呢. 在昨日举行的前海国际科技创新峰会期间,雷锋网对工信部中国电子标准化研究院软件工程与评估中心主任、中国区块链技术标准制定组负责人周平进行了专访.

【计算机视觉】对检测的人脸进行剪切和归一化

- - CSDN博客综合推荐文章
要进行人脸的识别,尤其是复杂环境下的人脸识别,就要在捕获人脸图像之后对图像进行预处理的工作,如图像的大小和灰度的归一化,头部姿态的矫正,图像分割等. 这样做的目的是改善图像质量,消除噪声,统一图像灰度值及尺寸,为后序特征提取和分类识别打好基础. 该文将就人脸的剪切和归一化操作进行学习探讨,并做一笔记备用.

数据仓库

- Ran - Linux@SOHU
翻译:马少兵、曾怀东、朱翊然、林业. 尽管服务器存储、处理能力得到有效的提高,以及服务器价格的降低,让人们能够负担起大量的服务器,但是商业软件应用和监控工具快速的增加,还是使得人们被大量的数据所困扰. 在数据仓库领域中的许多系统管理员、应用开发者,以及初级数据库管理员发现,他们正在处理“海量数据”-不管你准备与否-都会有好多不熟悉的术语,概念或工具.

数据抽取

- - 数据库 - ITeye博客
转自: http://wiki.mbalib.com/wiki/%E6%95%B0%E6%8D%AE%E6%8A%BD%E5%8F%96#.   数据抽取是指从源数据源系统抽取目的数据源系统需要的. 实际应用中,数据源较多采用的是. 数据迁移或数据复制,它将数据源中的表或视图的数据原封不动的从数 据库中抽取出来,并转换成自己的ETL 工具可以识别的格式.

数据库sharding

- - 数据库 - ITeye博客
当团队决定自行实现sharding的时候,DAO层可能是嵌入sharding逻辑的首选位置,因为在这个层面上,每一个DAO的方法都明确地知道需要访问的数据表以及查询参数,借助这些信息可以直接定位到目标shard上,而不必像框架那样需要对SQL进行解析然后再依据配置的规则进行路由. 另一个优势是不会受ORM框架的制约.

数据脱敏

- - IT瘾-bigdata
作者|李呈祥,其中部分内容由十一城补充. 数据脱敏(Data Masking),又称数据漂白、数据去隐私化或数据变形. 百度百科对数据脱敏的定义为:指对某些敏感信息通过脱敏规则进行数据的变形,实现敏感隐私数据 的可靠保护. 这样,就可以在开发、测试和其它非生产环境以及外包环境中安全地使用脱敏后的真实数据集.