机器学习项目如何管理:现状

标签: 机器学习 项目 管理 | 发表时间:2017-12-09 05:35 | 作者:
出处:http://gigix.thoughtworkers.org/

Atlassian今年4月的一篇博客提出,到2020年有87%的Jira用户认为他们的工作会被AI改变。具体到项目管理上,Atlassian的观点是,AI首先会作为项目管理助手进入我们的视野,然后透过数据拓展我们对项目的理解,更进一步还能通过主动猜测、倡导优秀实践、创造新的元数据层等方式弥补数据的缺失,最终对项目提出有益的建议。

然而愿望是美好的现实是骨感的。还不要说在项目管理中使用机器学习,关于机器学习的项目应该怎么管理,业界似乎已经有很多不甚圆满的经历。例如一位创业者谈他们如何 用自然语言处理技术推动销售。看起来他们尝试了各种不同的数据源、多种特征工程的方法、以及多种算法,接下来还有很多想要尝试的东西。从这个故事中我们看不到的是,他们给自己设置的目标是什么、目前的进展是什么、基于什么原则在指导每一次的尝试。简而言之,这位创业者的机器学习项目并没有任何有效的管理。

另一个 同样缺乏管理的机器学习项目就没有那么幸运。年薪百万的数据科学家被认为“没有给公司带来实际价值。高管们不知道他们具体做了什么,业务人员每周都给他们提出预测需求,却很少能在短时间得到回应”。与前面一个故事相比,这里的数据科学家需要在别人的管理之下开展工作,管理方法的欠缺无疑是矛盾累积和激化的原因之一。针对这个故事,作者提出了五点非常抽象的建议:1.从最简单的模型开始;2.探索更多问题;3.用全部的数据和特征训练模型;4.业务驱动模型;5.专注于自动化。我认为这几点并不能引导这家公司的管理者更有效地管理他们的数据科学家。

这种缺乏管理方法的现象,一个重要的原因是典型的IT管理者对机器学习缺乏必要的了解(甚至更糟糕,有一些似是而非的半吊子的了解)。目前而论,咨询公司和商业/科技传媒在普及“必要的了解”方面并没有起到很好的作用。 麦肯锡2015年的文章说,关于机器学习,企业领导层需要了解的问题还是“传统行业能通过机器学习获得什么新的洞察”这种高层面的,提出的建议也是“机器学习要分描述、预测、处方三步走”这样的宏观建议。当然麦记的建议历来是面向CxO级别的,不落到项目管理层面也很正常。

HBR也在2015年讨论“ 每个管理者都需要了解的机器学习知识”,提出了一些很重要的点:不光需要大数据、还需要广泛的数据;机器学习只是做预测、不提供因果性;要区分信号与噪音(还提到了特征提取、规则化、交叉验证等具体技术);以及一些容易犯的错误(例如强行归因、不恰当的期望、迷信大数据量、对人的判断利用不足等)。但这篇文章的问题在于,它没有提供一套成型的工作方法。这些技术应该什么时候用,这些错误会在什么时候犯,文章没有提供出来,于是读者仍然被置于一个“等你该知道的时候你就知道了”的状态,很难对项目管理带来立竿见影的改变。

2014年的一篇博客着重谈机器学习项目的布置,包括应该有哪些目录、数据怎么管理、代码怎么组织等非常具体的实践。作者提出了项目流程的几个原则:透明;可维护;模块化;可迁移;可复制;效率。关于项目的可复制性,作者也从工程实践角度 提出了10条原则。在工程实践这个角度,这位作者给出的指导原则具有很好的可操作性。

但是在项目管理角度,行业仍在继续探索。今年7月InfoQ的一篇文章讨论 如何开发机器学习的MVP,作者总结了四个思考步骤:第一问题是否能转化成分类/回归的问题;第二目标是否是容易获取、客观无偏差的数据;第三是问题的预测目标,因果关系是什么;第四是这个问题是不是一个真的业务需求。这也是几个很重要的思考点,不足之处仍然是缺乏系统性,并且缺落地的方法指导。

有一篇博客提出了很有意义的问题: 机器学习项目为什么未实现敏捷开发?作者发现算法类项目流程漫长,并结合之前实践Scrum的经验,提出了一些可能可以优化的方面,尤其是在团队组织形式上,是否可以参考敏捷的全功能团队经验。作者并且提出了一个重要的问题:对算法模型的评估是否必须在线上进行?或者换个角度来问这个问题:如何降低线下模型评估的偏差程度?

敏捷软件开发之所以成为一种被广泛接受的软件开发方法论,不仅仅是因为它有高阶的思想支撑和指导原则,更重要的是它有一系列非常具体、非常可落地的实践。这些实践对于一线工作者的意义在于:(1)知道什么时候该做什么事;(2)知道什么时候该看什么指标;(3)知道什么时候可能有什么风险。机器学习类的项目要真正普及,也会需要这么一套具体可落地的实践指导。

相关 [机器学习 项目 管理] 推荐:

机器学习项目如何管理:现状

- - 透明思考
Atlassian今年4月的一篇博客提出,到2020年有87%的Jira用户认为他们的工作会被AI改变. 具体到项目管理上,Atlassian的观点是,AI首先会作为项目管理助手进入我们的视野,然后透过数据拓展我们对项目的理解,更进一步还能通过主动猜测、倡导优秀实践、创造新的元数据层等方式弥补数据的缺失,最终对项目提出有益的建议.

机器学习项目如何管理:设置期望

- - 透明思考
我在之前的一篇文章中提到, 机器学习项目如何管理,目前在行业内是一个普遍存在的难题. 具体而言,对于这类项目,我们需要一套行之有效的工作办法,帮助一线工作者:(1)知道什么时候该做什么事;(2)知道什么时候该看什么指标;(3)知道什么时候可能有什么风险. 这样一套工作办法的第一步,就是对一个机器学习项目设置合理的期望.

机器学习项目如何管理:工作内容

- - 透明思考
前一篇文章介绍了机器学习的基本过程,然后讨论了如何对机器学习项目设置期望的问题. 我们了解到,度量准确率的指标可以有多种,需要根据应用场景来选择. 一旦选好了度量指标,接下来就可以围绕这个指标来划分任务、监控进度、管理风险. 站在非常宏观的角度,机器学习系统工作的方式是:你有一个模型,你把一堆数据输入给它,然后你以某种方式使用它提供给你的输出.

机器学习项目如何管理:看板

- - 透明思考
在前面的文章中我们看到,涉及机器学习、人工智能的项目,普遍地存在 项目管理的困难. 然后我介绍了针对这类项目 如何设置合理的期望,并且深入分析了 机器学习项目的工作内容. 既然已经知道如何设置客户的期望、又知道可以做哪些事来逼近这个期望,那么围绕期望和动作进行任务的拆解、管理和可视化应该是顺理成章的.

Ruby的机器学习项目

- - 阳志平的网志-技术类
作者是辉瑞公司的小牛,可惜烂尾了. 我在改啊改啊,可惜现在是商业项目,暂时不能放出改掉的部分. 对了,顺便做个小广告,去年组织翻译的一本小书:社会网络分析:方法与实践. 已经上市了,感兴趣的可以翻翻:. 社会网络分析:探索关系背后的科学与技术. treat:自然语言处理. 类似于igraph,也是桥接处理nlp.

10个关于人工智能和机器学习的有趣开源项目

- - 极客521 | 极客521
本文简要介绍了10款    Quora上网友推荐的 人工智能和机器学习领域方面的开源项目. GraphLab是一种新的面向机器学习的并行框架. GraphLab提供了一个完整的平台,让机构可以使用可扩展的机器学习系统建立大数据以分析产品,该公司客户包括Zillow、Adobe、Zynga、Pandora、Bosch、ExxonMobil等,它们从别的应用程序或者服务中抓取数据,通过推荐系统、欺诈监测系统、情感及社交网络分析系统等系统模式将大数据理念转换为生产环境下可以使用的预测应用程序.

10款人工智能和机器学习领域方面的开源项目

- - 灯火阑珊
GraphLab是一种新的面向机器学习的并行框架. GraphLab提供了一个完整的平台,让机构可以使用可扩展的机器学习系统建立大数据以分析产品,该公司客户包括Zillow、Adobe、Zynga、Pandora、Bosch、ExxonMobil等,它们从别的应用程序或者服务中抓取数据,通过推荐系统、欺诈监测系统、情感及社交网络分析系统等系统模式将大数据理念转换为生产环境下可以使用的预测应用程序.

2017年度盘点:15个最流行的GitHub机器学习项目

- - 机器之心
在本文中,作者列出了 2017 年 GitHub 平台上最为热门的知识库,囊括了数据科学、机器学习、深度学习中的各种项目,希望能对大家学习、使用有所帮助. 另,小编恬不知耻地把机器之心的 Github 项目也加了进来,求 star,求 pull requests. GitHub 是计算机科学领域最为活跃的社区,在 GitHub 上,来自不同背景的人们分享越来越多的软件工具和资源库.

GitHub 上最著名的20个 Python 机器学习项目,值得收藏!

- - IT瘾-geek
源 | kdnuggets|小象. 开源是技术创新和快速发展的核心. 这篇文章向你展示Python机器学习开源项目以及在分析过程中发现的非常有趣的见解和趋势. 我们分析了GitHub上的前20名Python机器学习项目,发现scikit-Learn,PyLearn2和NuPic是贡献最积极的项目. 让我们一起在Github上探索这些流行的项目.

项目集成项目管理之项目范围管理

- - CSDN博客系统运维推荐文章
7.1项目范围和项目范围管理.    项目范围:为完成具有规定特征和功能的产品、服务或结果,而必须完成的项目工作. 7.1.2项目范围管理的作用.    确定在项目内包括什么工作和不包括什么工作;由此界定的项目范围在项目的全生命周期内可能因某种原因而变化,项目范围管理也对这种变化进行管理. 7.1.3项目范围管理的主要过程.